Geometrical aspects of the multicritical phase diagrams for the Blume-Emery-Griffiths model

被引:3
|
作者
Alata, Nigar [1 ,2 ]
Erdem, Riza [3 ]
Guelpinar, Guel [4 ]
机构
[1] Akdeniz Univ, Inst Sci, TR-07058 Antalya, Turkiye
[2] Akdeniz Univ, Food Safety & Agr Res Ctr, TR-07058 Antalya, Turkiye
[3] Akdeniz Univ, Dept Phys, TR-07058 Antalya, Turkiye
[4] Dokuz Eylul Univ, Dept Phys, TR-35210 Izmir, Turkiye
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2023年 / 138卷 / 05期
关键词
BETHE LATTICE; INFORMATION GEOMETRY; MONTE-CARLO; ISING-MODEL;
D O I
10.1140/epjp/s13360-023-04076-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As a continuation of our preceding work (Erdem and Alata in Eur Phys J Plus 135:911, 2020, https://doi.org/10.1140/epjp/ s13360-020-00934-3), we used the thermodynamic geometry in the Ruppeiner formalism to study the geometrical aspects of the multicritical phase diagrams for the spin-1 Blume-Emery-Griffiths model in the presence of crystal field. We derived an expression for the thermodynamic curvature or Ricci scalar (R) and analyzed its temperature and crystal field behaviours near interesting critical and multicritical points. Our findings are presented as geometrical phase diagrams including critical and multicritical topology. From these diagrams, new vanishing curvature lines (R = 0) extending into the ferromagnetic or paramagnetic phases beyond the critical points and zero point temperature are observed.
引用
收藏
页数:8
相关论文
共 50 条