Solid-State Phosphine Ligand Engineering via Postsynthetic Modification of Amine-Functionalized Metal-Organic Frameworks

被引:0
|
作者
Greene, Aidan F. [1 ]
Shin, Jiehye [1 ]
Wade, Casey R. [1 ]
机构
[1] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA
关键词
DIRECTED ORTHO BORYLATION; C-H BORYLATION; COORDINATION POLYMER; CROSS-LINKING; COMPLEXES; ARENES; MOFS; GEL;
D O I
10.1021/acs.organomet.3c00478
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Postsynthetic phospha-Mannich condensation has been investigated for the design of solid-state phosphine ligands using amine-functionalized metal-organic frameworks (MOFs). Hydroxymethylphosphine precursors Ph2P(CH2OH), PhP(CH2OH)(2), and CyP(CH2OH)(2) readily condense at the 2-aminoterephthalate linkers of MIL-101(Al)-NH2 and IRMOF-3 to generate the phosphine-functionalized MOFs MIL/IRMOF-PPh2-x, MIL/IRMOF-PPh-x, and MIL/IRMOF-PCy-x, respectively, where x denotes the phosphine loading per amine site. Solution-state H-1 and P-31{H-1} nuclear magnetic resonance spectra of base-digested MOFs reveal that PhP(CH2OH)(2) and CyP(CH2OH)(2) react at the amine groups of the adjacent linkers, resulting in intraframework cross-linking. The phosphinated MOFs have been investigated as solid-state ligands for the Ir-catalyzed C-H borylation of arenes. MIL-PPh-0.1 and MIL-PCy-0.1 exhibit good activity for the benchmark C-H borylation of toluene when metalated with [Ir(OMe)(cod)](2) (cod = 1,5-cyclooctadiene). MIL-PPh2-0.1 and the IRMOF-3 derivatives show little or no catalytic turnover under the same conditions, revealing that the phosphine connectivity and MOF topology and pore size are critical factors in solid-state ligand design.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Furnishing Amine-Functionalized Metal-Organic Frameworks with the β-Amidoketone Group by Postsynthetic Modification
    Gee, William J.
    Cadman, Laura K.
    Hamzah, Harina Amer
    Mahon, Mary F.
    Raithby, Paul R.
    Burrows, Andrew D.
    [J]. INORGANIC CHEMISTRY, 2016, 55 (21) : 10839 - 10842
  • [2] Dual Functionalized Cages in Metal-Organic Frameworks via Stepwise Postsynthetic Modification
    Li, Baiyan
    Ma, Dingxuan
    Li, Yi
    Zhang, Yiming
    Li, Guanghua
    Shi, Zhan
    Feng, Shouhua
    Zaworotko, Michael J.
    Ma, Shengqian
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (13) : 4781 - 4786
  • [3] Modification of hydrophilic amine-functionalized metal-organic frameworks to hydrophobic for dye adsorption
    Zha, Qijun
    Sang, Xinxin
    Liu, Dongyin
    Wang, Dawei
    Shi, Gang
    Ni, Caihua
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2019, 275 : 23 - 29
  • [4] Amine-functionalized metal-organic frameworks for the transesterification of triglycerides
    Chen, Jinzhu
    Liu, Ruliang
    Gao, Hui
    Chen, Limin
    Ye, Daiqi
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) : 7205 - 7213
  • [5] Postsynthetic modification of metal-organic frameworks
    Tanabe, Kristine K.
    Cohen, Seth M.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [6] Postsynthetic modification of metal-organic frameworks
    Wang, Zhenqiang
    Cohen, Seth M.
    [J]. CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1315 - 1329
  • [7] Postsynthetic Modification of Metal-Organic Frameworks
    Cohen, Seth M.
    Rosi, Nathaniel L.
    [J]. INORGANIC CHEMISTRY, 2021, 60 (16) : 11703 - 11705
  • [8] Amine-functionalized metal-organic frameworks: structure, synthesis and applications
    Lin, Yichao
    Kong, Chunlong
    Chen, Liang
    [J]. RSC ADVANCES, 2016, 6 (39): : 32598 - 32614
  • [9] Carbon dioxide capture in amine-functionalized metal-organic frameworks
    D'Alessandro, Deanna M.
    Demessence, Aude
    Long, Jeffrey R.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [10] Postsynthetic Modification of Zirconium Metal-Organic Frameworks
    Marshall, Ross J.
    Forgan, Ross S.
    [J]. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2016, (27) : 4310 - 4331