Theoretical study on the origin of anomalous temperature-dependent electric resistivity of ferromagnetic semiconductor

被引:1
|
作者
Shinya, Hikari [1 ,2 ,3 ,4 ,5 ]
Fukushima, Tetsuya [5 ,6 ]
Sato, Kazunori [5 ,7 ]
Ohya, Shinobu [1 ,2 ,8 ]
Katayama-Yoshida, Hiroshi [1 ,5 ]
机构
[1] Univ Tokyo, CSRN, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Dept Elect Engn & Informat Syst, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[3] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
[4] Tohoku Univ, CSIS, 2-1-1 Katahira,Aobo Ku, Sendai, Miyagi 9808577, Japan
[5] Osaka Univ, CSRN, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[6] Natl Inst Adv Ind Sci & Technol, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
[7] Osaka Univ, Grad Sch Engn, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[8] Univ Tokyo, Inst Nano Quantum Informat Elect NanoQuine, 4-6-1 Komaba,Meguro Ku, Tokyo 1538505, Japan
基金
日本科学技术振兴机构;
关键词
COHERENT-POTENTIAL APPROXIMATION; CURIE-TEMPERATURE; P-TYPE; GAMNAS; SPINTRONICS; CONDUCTION; (GA;
D O I
10.1063/5.0165352
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Employing Korringa-Kohn-Rostoker Green's function methodology, our investigation elucidates the previously obscure origins of the anomalous temperature-dependent electrical resistivity behavior of (Ga,Mn)As ferromagnetic semiconductors. Phonon and magnon excitations induced by temperature effects are addressed via the coherent potential approximation, while the Kubo-Greenwood formula is employed to compute transport properties. Consequently, the anomalous temperature-dependent electrical resistivity arising from the ferromagnetic-paramagnetic transition is successfully replicated. Our examination of electronic structures and magnetic interactions reveals pivotal roles played by antisite defects and interstitial Mn atoms in governing this behavior. As this approach enables both the estimation of temperature-dependent transport properties and the assessment of underlying mechanisms from a microscopic standpoint, it holds significant potential as a versatile tool across diverse fields.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Experimental and theoretical study of temperature-dependent variable stiffness of magnetorheological elastomers
    Xiang, Changle
    Gao, Pu
    Liu, Hui
    Zhou, Han
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2018, 109 (02) : 113 - 128
  • [42] Anomalous aggregation regimes of temperature-dependent Smoluchowski equations
    Osinsky, A., I
    Brilliantov, N., V
    PHYSICAL REVIEW E, 2022, 105 (03)
  • [43] Anomalous temperature-dependent characteristics of silicon diffused resistors
    Chuang, HM
    Tsai, SF
    Thei, KB
    Liu, WC
    ELECTRONICS LETTERS, 2003, 39 (13) : 1015 - 1016
  • [44] Theoretical and Experimental Study of Time- and Temperature-Dependent Photoluminescence in ZnO
    Shishehchi, Sara
    Garrett, Gregory A.
    Rudin, Sergey
    Wraback, Michael
    Bellotti, Enrico
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (08) : 3033 - 3040
  • [45] Theoretical and Experimental Study of Time- and Temperature-Dependent Photoluminescence in ZnO
    Sara Shishehchi
    Gregory A. Garrett
    Sergey Rudin
    Michael Wraback
    Enrico Bellotti
    Journal of Electronic Materials, 2014, 43 : 3033 - 3040
  • [46] Temperature-dependent electrical resistivity of tungsten oxide thin films
    Al-Kuhaili, M. F.
    Qahtan, T. F.
    Mekki, M. B.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 182
  • [47] Optical Study on Temperature-Dependent Absorption Edge of γ-InSe-Layered Semiconductor
    Wu, Wen-Te
    Tiong, Kwong-Kau
    Tan, Shih-Wei
    Hu, Sheng-Yao
    Lee, Yueh-Chien
    Chen, Ruei-San
    Wu, Chia-Ti
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [48] Interpretation of temperature-dependent resistivity of electron-doped cuprates
    Varshney, D
    Choudhary, KK
    Singh, RK
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2002, 15 (07): : 1119 - 1126
  • [50] Temperature-dependent electrical resistivity of macroscopic graphene nanoplatelet strips
    Sibilia, S.
    Bertocchi, F.
    Chiodini, S.
    Cristiano, F.
    Ferrigno, L.
    Giovinco, G.
    Maffucci, A.
    NANOTECHNOLOGY, 2021, 32 (27)