Single-Image Super-Resolution Challenges: A Brief Review

被引:13
|
作者
Ye, Shutong [1 ]
Zhao, Shengyu [1 ]
Hu, Yaocong [2 ]
Xie, Chao [1 ,3 ]
机构
[1] Nanjing Forestry Univ, Coll Mech & Elect Engn, Nanjing 210037, Peoples R China
[2] Anhui Polytech Univ, Sch Elect Engn, Wuhu 241000, Peoples R China
[3] Nanjing Forestry Univ, Coll Landscape Architecture, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
single-image super-resolution; single-image super-resolution challenges; deep learning; deep networks; QUALITY ASSESSMENT; RECOGNITION; RESOLUTION; NETWORKS;
D O I
10.3390/electronics12132975
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Single-image super-resolution (SISR) is an important task in image processing, aiming to achieve enhanced image resolution. With the development of deep learning, SISR based on convolutional neural networks has also gained great progress, but as the network deepens and the task of SISR becomes more complex, SISR networks become difficult to train, which hinders SISR from achieving greater success. Therefore, to further promote SISR, many challenges have emerged in recent years. In this review, we briefly review the SISR challenges organized from 2017 to 2022 and focus on the in-depth classification of these challenges, the datasets employed, the evaluation methods used, and the powerful network architectures proposed or accepted by the winners. First, depending on the tasks of the challenges, the SISR challenges can be broadly classified into four categories: classic SISR, efficient SISR, perceptual extreme SISR, and real-world SISR. Second, we introduce the datasets commonly used in the challenges in recent years and describe their characteristics. Third, we present the image evaluation methods commonly used in SISR challenges in recent years. Fourth, we introduce the network architectures used by the winners, mainly to explore in depth where the advantages of their network architectures lie and to compare the results of previous years' winners. Finally, we summarize the methods that have been widely used in SISR in recent years and suggest several possible promising directions for future SISR.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Texture enhancement for improving single-image super-resolution performance
    Yoo, Seok Bong
    Choi, Kyuha
    Jeon, Young Woo
    Ra, Jong Beom
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 46 : 29 - 39
  • [42] Anchored neighborhood deep network for single-image super-resolution
    Shi, Wuzhen
    Liu, Shaohui
    Jiang, Feng
    Zhao, Debin
    Tian, Zhihong
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2018,
  • [43] Single-Image Super-Resolution Based on Rational Fractal Interpolation
    Zhang, Yunfeng
    Fan, Qinglan
    Bao, Fangxun
    Liu, Yifang
    Zhang, Caiming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (08) : 3782 - 3797
  • [44] Adapting Single-Image Super-Resolution Models to Video Super-Resolution: A Plug-and-Play Approach
    Wang, Wenhao
    Liu, Zhenbing
    Lu, Haoxiang
    Lan, Rushi
    Huang, Yingxin
    SENSORS, 2023, 23 (11)
  • [45] Across-Resolution Adaptive Dictionary Learning for Single-Image Super-Resolution
    Tanaka, Masayuki
    Sakurai, Ayumu
    Okutomi, Masatoshi
    DIGITAL PHOTOGRAPHY IX, 2013, 8660
  • [46] Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior
    Kim, Kwang In
    Kwon, Younghee
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (06) : 1127 - 1133
  • [47] Learning Local Distribution for Extremely Efficient Single-Image Super-Resolution
    Wu, Wei
    Xu, Wen
    Zheng, Bolun
    Huang, Aiai
    Yan, Chenggang
    ELECTRONICS, 2022, 11 (09)
  • [48] Face quality analysis of single-image super-resolution based on SIFT
    Xiao Hu
    Juan Sun
    Zhuohao Mai
    Shuyi Li
    Shaohu Peng
    Signal, Image and Video Processing, 2020, 14 : 829 - 837
  • [49] Deep Hyperspectral Prior: Single-Image Denoising, Inpainting, Super-Resolution
    Sidorov, Oleksii
    Hardeberg, Jon
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3844 - 3851
  • [50] Single-Image Super-Resolution Reconstruction Aggregating Residual Attention Network
    Peng Yanfei
    Zhang Manting
    Zhang Pingjia
    Li Jian
    Gu Lirui
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (10)