Monitoring and apportioning sources of indoor air quality using low-cost particulate matter sensors

被引:15
|
作者
Bousiotis, Dimitrios [1 ]
Alconcel, Leah-Nani S. [2 ]
Beddows, David C. S. [1 ]
Harrison, Roy M. [1 ,3 ]
Pope, Francis D. [1 ]
机构
[1] Univ Birmingham, Sch Geog Earth & Environm Sci, Div Environm Hlth & Risk Management, Birmingham B15 2TT, England
[2] Univ Birmingham, Sch Met & Mat, Birmingham B15 2TT, England
[3] King Abdulaziz Univ, Ctr Excellence Environm Studies, Dept Environm Sci, POB 80203, Jeddah 21589, Saudi Arabia
基金
英国自然环境研究理事会;
关键词
Particulate matter; Source apportionment; Indoor air quality; Exposure; Infiltration; PM2; 5; POSITIVE MATRIX FACTORIZATION; INDOOR/OUTDOOR RELATIONSHIPS; SIZE DISTRIBUTION; BACKGROUND SITE; POLLUTION; URBAN; PARTICLES; PM2.5; HOMES; PERFORMANCE;
D O I
10.1016/j.envint.2023.107907
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Air quality is one of the most important factors in public health. While outdoor air quality is widely studied, the indoor environment has been less scrutinised, even though time spent indoors is typically much greater than outdoors. The emergence of low-cost sensors can help assess indoor air quality. This study provides a new methodology, utilizing low-cost sensors and source apportionment techniques, to understand the relative importance of indoor and outdoor air pollution sources upon indoor air quality. The methodology is tested with three sensors placed in different rooms inside an exemplar house (bedroom, kitchen and office) and one out-doors. When the family was present, the bedroom had the highest average concentrations for PM2.5 and PM10 (3.9 +/- 6.8 ug/m3 and 9.6 +/- 12.7 mu g/m3 respectively), due to the activities undertaken there and the presence of softer furniture and carpeting. The kitchen, while presenting the lowest PM concentrations for both size ranges (2.8 +/- 5.9 ug/m3 and 4.2 +/- 6.9 mu g/m3 respectively), presented the highest PM spikes, especially during cooking times. Increased ventilation in the office resulted in the highest PM1 concentration (1.6 +/- 1.9 mu g/m3), high-lighting the strong effect of infiltration of outdoor air for the smallest particles. Source apportionment, via positive matrix factorisation (PMF), showed that up to 95 % of the PM1 was found to be of outdoor sources in all the rooms. This effect was reduced as particle size increased, with outdoor sources contributing >65 % of the PM2.5, and up to 50 % of the PM10, depending on the room studied. The new approach to elucidate the con-tributions of different sources to total indoor air pollution exposure, described in this paper, is easily scalable and translatable to different indoor locations.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Indoor air quality monitoring and source apportionment using low-cost sensors
    Higgins, Christina
    Kumar, Prashant
    Morawska, Lidia
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2024, 6 (01):
  • [2] Comparison of Low-Cost Particulate Matter Sensors for Indoor Air Monitoring during COVID-19 Lockdown
    Kaliszewski, Miron
    Wlodarski, Maksymilian
    Mlynczak, Jaroslaw
    Kopczynski, Krzysztof
    SENSORS, 2020, 20 (24) : 1 - 17
  • [3] Indoor Household Particulate Matter Measurements Using a Network of Low-cost Sensors
    Hegde, Shruti
    Min, Kyeong T.
    Moore, James
    Lundrigan, Philip
    Patwari, Neal
    Collingwood, Scott
    Balch, Alfred
    Kelly, Kerry E.
    AEROSOL AND AIR QUALITY RESEARCH, 2020, 20 (02) : 381 - 394
  • [4] Calibration Method for Particulate Matter Low-Cost Sensors Used in Ambient Air Quality Monitoring and Research
    Jagatha, Janani Venkatraman
    Klausnitzer, Andre
    Chacon-Mateos, Miriam
    Laquai, Bernd
    Nieuwkoop, Evert
    van der Mark, Peter
    Vogt, Ulrich
    Schneider, Christoph
    SENSORS, 2021, 21 (12)
  • [5] Evaluations of Low-cost Air Quality Sensors for Particulate Matter (PM2.5) under Indoor and Outdoor Conditions
    Rabuan, Utbah
    Nadzir, Mohd Shahrul Mohd
    Sham, Siti Zahanah Abdullah
    Bahri, Sharifah Batrisyia Izzati Wan Shaiful
    Borah, Jintu
    Majumdar, Shubhankar
    Lei, Thomas M. T.
    Ali, Sawal Hamid Md
    Wahab, Muhammad Ikram A.
    Yunus, Noor Hidayah Mohd
    SENSORS AND MATERIALS, 2023, 35 (08) : 2881 - 2895
  • [6] Application of low-cost particulate matter sensors for air quality monitoring and exposure assessment in underground mines: A review
    Nana A.Amoah
    Guang Xu
    Yang Wang
    Jiayu Li
    Yongming Zou
    Baisheng Nie
    International Journal of Minerals,Metallurgy and Materials, 2022, 29 (08) : 1475 - 1490
  • [7] Application of low-cost particulate matter sensors for air quality monitoring and exposure assessment in underground mines: A review
    Amoah, Nana A.
    Xu, Guang
    Wang, Yang
    Li, Jiayu
    Zou, Yongming
    Nie, Baisheng
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (08) : 1475 - 1490
  • [8] Application of low-cost particulate matter sensors for air quality monitoring and exposure assessment in underground mines: A review
    Nana A. Amoah
    Guang Xu
    Yang Wang
    Jiayu Li
    Yongming Zou
    Baisheng Nie
    International Journal of Minerals, Metallurgy and Materials, 2022, 29 : 1475 - 1490
  • [9] Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors
    Pope, Francis D.
    Gatari, Michael
    Ng'ang'a, David
    Poynter, Alexander
    Blake, Rhiannon
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (20) : 15403 - 15418
  • [10] Recent advancements in low-cost portable sensors for urban and indoor air quality monitoring
    Hernandez-Gordillo, A.
    Ruiz-Correa, S.
    Robledo-Valero, V.
    Hernandez-Rosales, C.
    Arriaga, S.
    AIR QUALITY ATMOSPHERE AND HEALTH, 2021, 14 (12): : 1931 - 1951