Research on a Small-Sample Fault Diagnosis Method for UAV Engines Based on an MSSST and ACS-BPNN Optimized Deep Convolutional Network

被引:1
|
作者
Li, Siyu [1 ]
Liu, Zichang [1 ]
Yan, Yunbin [1 ]
Han, Kai [1 ]
Han, Yueming [1 ]
Miao, Xinyu [2 ]
Cheng, Zhonghua [1 ]
Ma, Shifei [3 ]
机构
[1] Army Engn Univ PLA, Shijiazhuang Campus, Shijiazhuang 050003, Peoples R China
[2] Armed Police Beijing Municipal Command Sixth Detac, Beijing 100073, Peoples R China
[3] PLAA Infantry Acad, Shijiazhuang Div, Shijiazhuang 050003, Peoples R China
关键词
fault diagnosis; transfer learning; surrogate model; hyperparameter optimization; small sample; S-TRANSFORM; ALGORITHM;
D O I
10.3390/pr12020367
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Regarding the difficulty of extracting fault information in the faulty status of UAV (unmanned aerial vehicle) engines and the high time cost and large data requirement of the existing deep learning fault diagnosis algorithms with many training parameters, in this paper, a small-sample transfer learning fault diagnosis algorithm is proposed. First, vibration signals under the engine fault status are converted into a two-dimensional time-frequency map by multiple simultaneous squeezing S-transform (MSSST), which reduces the randomness of manually extracted features. Second, to address the problems of slow network model training and large data sample requirement, a transfer diagnosis strategy using the fine-tuned time-frequency map samples as the pre-training model of the ResNet-18 convolutional neural network is proposed. In addition, in order to improve the training effect of the network model, an agent model is introduced to optimize the hyperparameter network autonomously. Finally, experiments show that the algorithm proposed in this paper can obtain high classification accuracy in fault diagnosis of UAV engines compared to other commonly used methods, with a classification accuracy of faults as high as 97.1751%; in addition, we show that it maintains a very stable small-sample migratory learning capability under this condition.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
    Li, Hongmei
    Huang, Jinying
    Ji, Shuwei
    SENSORS, 2019, 19 (09)
  • [32] Research on fault diagnosis of automobile engines based on the deep learning 1D-CNN method
    Du, Canyi
    Zhong, Rui
    Zhuo, Yishen
    Zhang, Xinyu
    Yu, Feifei
    Li, Feng
    Rong, Ying
    Gong, Yongkang
    ENGINEERING RESEARCH EXPRESS, 2022, 4 (01):
  • [33] A Bearing Fault Diagnosis Method under Small Sample Conditions Based on the Fractional Order Siamese Deep Residual Shrinkage Network
    Li, Tao
    Wu, Xiaoting
    Luo, Zhuhui
    Chen, Yanan
    He, Caichun
    Ding, Rongjun
    Zhang, Changfan
    Yang, Jun
    FRACTAL AND FRACTIONAL, 2024, 8 (03)
  • [34] An Integrated Method of Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network Optimized by Sparrow Optimization Algorithm
    Dong, Shuyuan
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [35] Small-Sample Bearings Fault Diagnosis Based on ResNet18 with Pre-Trained and Fine-Tuned Method
    Niu, Junlin
    Pan, Jiafang
    Qin, Zhaohui
    Huang, Faguo
    Qin, Haihua
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [36] Gearbox fault diagnosis method based on deep convolutional neural network vibration signal image recognition
    Bian Jingyi
    Liu Xiuli
    Xu Xiaoli
    PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 456 - 465
  • [37] Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning
    Xu, Gaowei
    Liu, Min
    Jiang, Zhuofu
    Soeffker, Dirk
    Shen, Weiming
    SENSORS, 2019, 19 (05)
  • [38] Conditional generative adversarial network based data augmentation for fault diagnosis of diesel engines applied with infrared thermography and deep convolutional neural network
    Wang, Rongcai
    Jia, Xisheng
    Liu, Zichang
    Dong, Enzhi
    Li, Siyu
    Cheng, Zhonghua
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2024, 26 (01):
  • [39] Research on a Bearing Fault Enhancement Diagnosis Method with Convolutional Neural Network Based on Adaptive Stochastic Resonance
    Wang, Chen
    Qiao, Zijian
    Huang, Zhangjun
    Xu, Junchen
    Fang, Shitong
    Zhang, Cailiang
    Liu, Jinjun
    Zhu, Ronghua
    Lai, Zhihui
    SENSORS, 2022, 22 (22)
  • [40] A novel semi-supervised fault diagnosis method for chillers based on neighbor-optimized graph convolutional network
    Deng, Qiao
    Chen, Zhiwen
    Tang, Peng
    Li, Xinhong
    Yang, Chunhua
    Yang, Xu
    ENERGY AND BUILDINGS, 2023, 301