A malicious network traffic detection model based on bidirectional temporal convolutional network with multi-head self-attention mechanism

被引:8
|
作者
Cai, Saihua [1 ,2 ]
Xu, Han [1 ]
Liu, Mingjie [1 ]
Chen, Zhilin [1 ]
Zhang, Guofeng [3 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ, Jiangsu Key Lab Secur Technol Ind Cyberspace, Zhenjiang 212013, Peoples R China
[3] Taishan Univ, Sch Informat Sci & Technol, Tai An 271000, Peoples R China
基金
中国国家自然科学基金;
关键词
Malicious network traffic detection; Bidirectional temporal convolutional network; Multi -head self -attention mechanism; Cross -entropy loss function; Deep learning;
D O I
10.1016/j.cose.2023.103580
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The increasingly frequent network intrusions have brought serious impacts to the production and life, thus malicious network traffic detection has received more and more attention in recent years. However, the traditional rule matching-based and machine learning-based malicious network traffic detection methods have the problems of relying on human experience as well as low detection efficiency. The continuous development of deep learning technology provides new ideas to solve malicious network traffic detection, and the deep learning models are also widely used in the field of malicious network traffic detection. Compared with other deep learning models, bidirectional temporal convolutional network (BiTCN) has achieved better detection results due to its ability to obtain bidirectional semantic features of network traffic, but it does not consider the different meanings as well as different importance of different subsequence segments in network traffic sequences; In addition, the loss function used in BiTCN is the negative log likelihood function, which may lead to overfitting problems when facing multi-classification problems and data imbalance problems. To solve these problems, this paper proposes a malicious network traffic detection model based on BiTCN and multi-head self-attention (MHSA) mechanism, namely BiTCN_MHSA, it innovatively uses the MHSA mechanism to assign different weights to different subsequences of network traffic, thus making the model more focused on the characteristics of malicious network traffic as well as improving the efficiency of processing global network traffic; Moreover, it also changes its loss function to a cross-entropy loss function to penalize misclassification more severely, thereby speeding up the convergence. Finally, extensive experiments are conduced to evaluate the efficiency of proposed BiTCN_MHSA model on two public network traffic, the experimental results verify that the proposed BiTCN_MHSA model outperforms six state-of-the-arts in precision, recall, F1-measure and accuracy.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] GlobalMind: Global multi-head interactive self-attention network for hyperspectral change detection
    Hu, Meiqi
    Wu, Chen
    Zhang, Liangpei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 211 : 465 - 483
  • [22] Deep Bug Triage Model Based on Multi-head Self-attention Mechanism
    Yu, Xu
    Wan, Fayang
    Tang, Bin
    Zhan, Dingjia
    Peng, Qinglong
    Yu, Miao
    Wang, Zhaozhe
    Cui, Shuang
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT II, 2022, 1492 : 107 - 119
  • [23] EEG-Based Emotion Recognition Using Convolutional Recurrent Neural Network with Multi-Head Self-Attention
    Hu, Zhangfang
    Chen, Libujie
    Luo, Yuan
    Zhou, Jingfan
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [24] A novel intelligent fault diagnosis method of bearing based on multi-head self-attention convolutional neural network
    Ren, Hang
    Liu, Shaogang
    Qiu, Bo
    Guo, Hong
    Zhao, Dan
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2024, 38
  • [25] A novel detection model for abnormal network traffic based on bidirectional temporal convolutional network
    Chen, Jinfu
    Lv, Tianxiang
    Cai, Saihua
    Song, Luo
    Yin, Shang
    INFORMATION AND SOFTWARE TECHNOLOGY, 2023, 157
  • [26] A Dynamic Temporal Self-attention Graph Convolutional Network for Traffic Prediction
    Jiang, Ruiyuan
    Wang, Shangbo
    Zhang, Yuli
    arXiv, 2023,
  • [27] An interactive multi-head self-attention capsule network model for aspect sentiment classification
    She, Lina
    Gong, Hongfang
    Zhang, Siyu
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (07): : 9327 - 9352
  • [28] An interactive multi-head self-attention capsule network model for aspect sentiment classification
    Lina She
    Hongfang Gong
    Siyu Zhang
    The Journal of Supercomputing, 2024, 80 : 9327 - 9352
  • [29] MHSAN: Multi-Head Self-Attention Network for Visual Semantic Embedding
    Park, Geondo
    Han, Chihye
    Kim, Daeshik
    Yoon, Wonjun
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 1507 - 1515
  • [30] Multi-head attention graph convolutional network model: End-to-end entity and relation joint extraction based on multi-head attention graph convolutional network
    Tao, Zhihua
    Ouyang, Chunping
    Liu, Yongbin
    Chung, Tonglee
    Cao, Yixin
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (02) : 468 - 477