Drinfeld's lemma for F-isocrystals, II: Tannakian approach

被引:1
|
作者
Kedlaya, Kiran S. [1 ]
Xu, Daxin [2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Drinfeld's lemma; overconvergent isocrystals; p-adic cohomology;
D O I
10.1112/S0010437X23007571
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Tannakian form of Drinfeld's lemma for isocrystals on a variety over a finite field, equipped with actions of partial Frobenius operators. This provides an intermediate step towards transferring V. Lafforgue's work on the Langlands correspondence over function fields from l-adic to p-adic coefficients. We also discuss a motivic variant and a local variant of Drinfeld's lemma.
引用
收藏
页码:90 / 119
页数:31
相关论文
共 50 条