CRISPR/Cas9 assisted stem cell therapy in Parkinson's disease

被引:18
|
作者
Pinjala, Poojitha [1 ]
Tryphena, Kamatham Pushpa [1 ]
Prasad, Renuka [2 ]
Khatri, Dharmendra Kumar [1 ]
Sun, Woong [2 ]
Singh, Shashi Bala [1 ]
Gugulothu, Dalapathi [3 ]
Srivastava, Saurabh [4 ]
Vora, Lalitkumar [5 ]
机构
[1] Natl Inst Pharmaceut Educ & Res NIPER Hyderabad, Dept Pharmacol & Toxicol, Mol & Cellular Neurosci Lab, Hyderabad 500037, Telangana, India
[2] Korea Univ, Coll Med, Dept Anat, Moonsuk Med Res Bldg,73 Inchon Ro, Seoul 12841, South Korea
[3] Delhi Pharmaceut Sci & Res Univ DPSRU, Dept Pharmaceut, New Delhi 110017, India
[4] Natl Inst Pharmaceut Educ & Res NIPER Hyderabad, Dept Pharmaceut, Hyderabad 500037, Telangana, India
[5] Queens Univ Belfast, Sch Pharm, 97 Lisburn Rd, Belfast BT9 7BL, North Ireland
关键词
Neurodegenerative disorder; alpha-synuclein; Gene editing; Human pluripotent stem cells; Embryonic stem cells; Disease model; GENE-THERAPY; DOPAMINERGIC-NEURONS; CRYSTAL-STRUCTURE; MOUSE MODEL; OPEN-LABEL; RAT MODEL; GAD GENE; PHASE-I; CAS9; COMPLEX;
D O I
10.1186/s40824-023-00381-y
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Since its discovery in 2012, CRISPR Cas9 has been tried as a direct treatment approach to correct the causative gene mutation and establish animal models in neurodegenerative disorders. Since no strategy developed until now could completely cure Parkinson's disease (PD), neuroscientists aspire to use gene editing technology, especially CRISPR/Cas9, to induce a permanent correction in genetic PD patients expressing mutated genes. Over the years, our understanding of stem cell biology has improved. Scientists have developed personalized cell therapy using CRISPR/Cas9 to edit embryonic and patient-derived stem cells ex-vivo. This review details the importance of CRISPR/Cas9-based stem cell therapy in Parkinson's disease in developing PD disease models and developing therapeutic strategies after elucidating the possible pathophysiological mechanisms.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9
    Ren, Jiangtao
    Zhao, Yangbing
    PROTEIN & CELL, 2017, 8 (09) : 634 - 643
  • [32] CRISPR/Cas9 Edited sRAGE-MSCs Protect Neuronal Death in Parkinson's Disease Model
    Lee, Aesuk
    Bayarsaikhan, Delger
    Arivazhagan, Roshini
    Park, Hyejung
    Lim, Byungyoon
    Gwak, Peter
    Jeong, Goo-Bo
    Lee, Jaewon
    Byun, Kyunghee
    Lee, Bonghee
    INTERNATIONAL JOURNAL OF STEM CELLS, 2019, 12 (01) : 114 - +
  • [33] What is CRISPR/Cas9?
    Redman, Melody
    King, Andrew
    Watson, Caroline
    King, David
    ARCHIVES OF DISEASE IN CHILDHOOD-EDUCATION AND PRACTICE EDITION, 2016, 101 (04): : 213 - 215
  • [34] The CRISPR/CAS9 world
    Perini, Giovanni
    MOLECULAR CYTOGENETICS, 2017, 10
  • [35] CRISPR/Cas9 Inducible Systems for Neurodegenerative Disease
    Asmus, Natalie
    Kantor, Boris
    MOLECULAR THERAPY, 2021, 29 (04) : 415 - 415
  • [36] CRISPR/CAS9 Technologies
    Williams, Bart O.
    Warman, Matthew L.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2017, 32 (05) : 883 - 888
  • [37] Harnessing CRISPR/Cas9 technology in cardiovascular disease
    Rezaei, Hamzeh
    Khadempar, Saedeh
    Farahani, Najmeh
    Hosseingholi, Elaheh Zadeh
    Hayat, Seyed Mohammad Gheibi
    Sathyapalan, Thozhukat
    Sahebkar, Amir Hossein
    TRENDS IN CARDIOVASCULAR MEDICINE, 2020, 30 (02) : 93 - 101
  • [38] CRISPR/Cas9 Editing for Gaucher Disease Modelling
    Pavan, Eleonora
    Ormazabal, Maximiliano
    Peruzzo, Paolo
    Vaena, Emilio
    Rozenfeld, Paula
    Dardis, Andrea
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (09)
  • [39] In vivo and in vitro disease modeling with CRISPR/Cas9
    Kato, Tomoko
    Takada, Shuji
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2017, 16 (01) : 13 - 24
  • [40] Advances in CRISPR/Cas9
    Zhu, Youmin
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022