Telecom-wavelength conversion in a high optical depth cold atomic system

被引:2
|
作者
Zhang, Wei-Hang [1 ,2 ]
Ye, Ying-Hao [1 ,2 ,3 ,4 ]
Zeng, Lei [1 ,2 ]
Dong, Ming-Xin [1 ,2 ,3 ,4 ]
LI, En-Ze [1 ,2 ]
Peng, Jing-Yuan [1 ,2 ]
LI, Yan [1 ,2 ]
Ding, Dong-Sheng [1 ,2 ]
Shi, Bao-Sen [1 ,2 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[3] Hefei Normal Univ, Inst Quantum Control & Quantum Informat, Hefei 230601, Anhui, Peoples R China
[4] Hefei Normal Univ, Sch Phys & Mat Engn, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
FREQUENCY-CONVERSION; QUANTUM MEMORY; GENERATION;
D O I
10.1364/OE.481055
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We experimentally investigate the frequency down-conversion through the four-wave mixing (FWM) process in a cold 85Rb atomic ensemble, with a diamond-level configuration. An atomic cloud with a high optical depth (OD) of 190 is prepared to achieve a high efficiency frequency conversion. Here, we convert a signal pulse field (795 nm) attenuated to a single-photon level, into a telecom light at 1529.3 nm within near C-band range and the frequency-conversion efficiency can reach up to 32%. We find that the OD is an essential factor affecting conversion efficiency and the efficiency may exceed 32% with an improvement in the OD. Moreover, we note the signal-to-noise ratio of the detected telecom field is higher than 10 while the mean signal count is larger than 0.2. Our work may be combined with quantum memories based on cold 85Rb ensemble at 795 nm and serve for long-distance quantum networks.(c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:8042 / 8048
页数:7
相关论文
共 50 条
  • [41] A novel all-optical header processing system based on time-to-wavelength conversion
    Calabretta, N
    Contestabile, G
    Ciaramella, E
    [J]. 2005 7th International Conference on Transparent Optical Networks, Vol 2, Proceedings, 2005, : 38 - 41
  • [42] Design of novel passive optical switching system using shared wavelength conversion with electrical buffer
    Kim, Ji-Hwan
    Choi, JungYul
    Kang, Minho
    Rhee, J. -K. Kevin
    [J]. IEICE ELECTRONICS EXPRESS, 2006, 3 (24): : 546 - 551
  • [43] Ultrabroad-band wavelength converter with high flattening conversion efficiency in a semiconductor optical amplifier
    徐晓峰
    韦珏
    康智慧
    姜云
    张惠芳
    高锦岳
    [J]. Chinese Optics Letters, 2004, (03) : 168 - 170
  • [45] High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers
    Nielsen, D.
    Chuang, S. L.
    Kim, N. J.
    Lee, D.
    Pyun, S. H.
    Jeong, W. G.
    Chen, C. Y.
    Lay, T. S.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (21)
  • [46] High speed all-optical wavelength conversion using injection locked semiconductor lasers
    Wu, KY
    Jiang, H
    Han, LY
    Teng, X
    Zhang, HY
    [J]. SEMICONDUCTOR AND ORGANIC OPTOELECTRONIC MATERIALS AND DEVICES, 2005, 5624 : 119 - 124
  • [47] System impact of cascaded all-optical wavelength conversion of D(Q)PSK signals in transparent optical networks
    Elschner R.
    Bunge C.-A.
    Petermann K.
    [J]. Journal of Networks, 2010, 5 (02) : 219 - 224
  • [48] Two-dimensional spatial optical solitons in Rydberg cold atomic system under the action of optical lattice
    Liao, Qiu-Yu
    Hu, Heng-Jie
    Chen, Mao-Wei
    Shi, Yi
    Zhao, Yuan
    Hua, Chun-Bo
    Xu, Si-Liu
    Fu, Qi-Dong
    Ye, Fang-Wei
    Zhou, Qin
    [J]. ACTA PHYSICA SINICA, 2023, 72 (10)
  • [49] Wide Wavelength Selectable and High Frequency Precision of All-Optical Wavelength Conversion Using Pump Light Generated from Optical Combs and SSB Modulation
    Matsuo, Shun
    Uenohara, Hiroyuki
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (21) : 7006 - 7013
  • [50] A Proposal for an Optical MEMS Accelerometer With High Sensitivity Based on Wavelength Modulation System
    Huang, Kun
    Yu, Meng
    Cheng, Lin
    Liu, Jun
    Cao, Liqin
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (21) : 5474 - 5478