Dual Interfacial Tin-Oxide Layer with Chloride Salt for High-Performance and Durable Perovskite Solar Cells

被引:6
|
作者
Rodbuntum, Sasiphapa [1 ]
Sukgorn, Nuttaya [1 ]
Chanlek, Narong [2 ]
Nakajima, Hideki [2 ]
Rujisamphan, Nopporn [3 ]
Ruankham, Pipat [4 ,5 ]
Wongratanaphisan, Duangmanee [4 ,5 ]
Kaewprajak, Anusit [1 ]
Kumnorkaew, Pisist [1 ]
机构
[1] Natl Sci & Technol Dev Agcy NSTDA, Natl Nanotechnol Ctr NANOTEC, Pathum Thani 12120, Thailand
[2] Synchrotron Light Res Inst, Nakhon Ratchasi 30000, Thailand
[3] King Mongkuts Univ Technol Thonburi, Fac Sci, Nanosci & Nanotechnol Grad Program, Bangkok 10140, Thailand
[4] Chiang Mai Univ, Fac Sci, Dept Phys & Mat Sci, Chiang Mai 50200, Thailand
[5] Minist Higher Educ Sci Res & Innovat, Thailand Ctr Excellence Phys ThEP Ctr, Bangkok 10400, Thailand
关键词
double-layer electron transport layer; tin oxide; chemical bath deposition (CBD); ammonium chloride (NH4Cl); stability-operation; low-temperatureprocess; ELECTRON-TRANSPORT LAYER; EFFICIENT; SNO2; VOLTAGE; ENERGY; TIO2; DYE;
D O I
10.1021/acsaem.3c01184
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A tailored SnO2 layer using double electron transport layers (ETLs) was designed to overcome interfacial energy barriers, enhance charge transport, and decrease charge recombination at the perovskite/ETL interfaces. Through this dual interfacial engineering approach, compact SnO(2 )layers with an ideal interfacial energy-level alignment were prepared using SnCl(2 )and NH4Cl salts, leading to efficient charge extraction. Stable perovskite solar cells with a power conversion efficiency of 21.46%, a high open-circuit voltage of 1.10 V, and a fill factor of 0.79 were successfully achieved using this approach. The devices also exhibited negligible hysteresis and no significant efficiency loss after a 2400 h stability test at ambient conditions without encapsulation. These results demonstrate an efficient approach to achieving high-quality ETL layers for efficient and stable solar cells.
引用
收藏
页码:10364 / 10375
页数:12
相关论文
共 50 条
  • [11] Additive Engineering toward High-Performance Tin Perovskite Solar Cells
    Wu, Tianhao
    Cui, Danyu
    Liu, Xiao
    Luo, Xinhui
    Su, Hongzhen
    Segawa, Hiroshi
    Zhang, Yiqiang
    Wang, Yanbo
    Han, Liyuan
    SOLAR RRL, 2021, 5 (05)
  • [12] A Graded Redox Interfacial Modifier for High-Performance Perovskite Solar Cells
    Qi, Wenjing
    Liu, Zhe
    Xie, Xinrui
    Zhang, Yijia
    Yu, Minhui
    Zhang, Shi-Yuan
    Zhao, Baodan
    Zhang, Meng
    Liu, Bo
    Di, Dawei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (50)
  • [13] Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells
    Ke, Weijun
    Zhao, Dewei
    Xiao, Chuanxiao
    Wang, Changlei
    Cimaroli, Alexander J.
    Grice, Corey R.
    Yang, Mengjin
    Li, Zhen
    Jiang, Chun-Sheng
    Al-Jassim, Mowafak
    Zhu, Kai
    Kanatzidis, Mercouri G.
    Fang, Guojia
    Yan, Yanfa
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (37) : 14276 - 14283
  • [14] Indium Zinc Oxide Electron Transport Layer for High-Performance Planar Perovskite Solar Cells
    Wang, Liang
    Liu, Fengjing
    Cai, Xiaoyong
    Ma, Tingli
    Jiang, Chao
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (50): : 28491 - 28496
  • [15] Optimal Methylammounium Chloride Additive for High-Performance Perovskite Solar Cells
    Cao, Qinghua
    Liu, Hui
    Xing, Jiangping
    Li, Bing'e
    Liu, Chuangping
    Xie, Fobao
    Zhang, Xiaoli
    Zhao, Weiren
    NANOMATERIALS, 2025, 15 (04)
  • [16] An Additive of Sulfonic Lithium Salt for High-Performance Perovskite Solar Cells
    Luo, Hui
    Wu, Jihuai
    Liu, Quanzhen
    Zhang, Mingjing
    Yuan, Pengqiang
    Huang, Miaoliang
    CHEMISTRYSELECT, 2018, 3 (43): : 12320 - 12324
  • [17] Investigating the properties of tin-oxide thin film developed by sputtering process for perovskite solar cells
    Chijioke Raphael Onyeagba
    Majedul Islam
    Prasad K. D. V. Yarlagadda
    Tuquabo Tesfamichael
    Materials for Renewable and Sustainable Energy, 2023, 12 : 31 - 37
  • [18] Strategies for constructing high-performance tin-based perovskite solar cells
    Nakamanya, Barbara
    Kakooza, Tonny
    Sun, Qianwen
    Haghayegh, Marjan
    Balilonda, Andrew
    Tebyetekerwa, Mike
    Yang, Shengyuan
    Zhu, Meifang
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (12) : 4184 - 4207
  • [19] Trimming defective perovskite layer surfaces for high-performance solar cells
    Kim, Chanhyeok
    Kim, Kihoon
    Kim, Youngmin
    Tsvetkov, Nikolai
    Jeon, Nam Joong
    Kang, Bong Joo
    Min, Hanul
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (22)
  • [20] High-performance perovskite solar cells based on passivating interfacial and intergranular defects
    Liu, Pengfei
    Liu, Zhiyong
    Qin, Chaochao
    He, Tingwei
    Li, Bingxin
    Ma, Lin
    Shaheen, Kausar
    Yang, Jien
    Yang, Haigang
    Liu, Hairui
    Liu, Kaikai
    Yuan, Mingjian
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 212