Nanostructured coating strategies of cathode for improved sodium ion battery performance

被引:33
|
作者
Tiwari, Vimal K. [1 ]
Singh, Rajendra Kumar [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Ion Liquid & Solid State Ion Lab, Varanasi 221005, India
关键词
Sodium ion batteries; Cathodes; Coating; Surface engineering; Specific capacity; HIGH-VOLTAGE CATHODE; LAYERED OXIDE CATHODES; IMPROVED ELECTROCHEMICAL PERFORMANCE; IRON-BASED FLUORIDE; LONG-LIFE CATHODE; LITHIUM-ION; HIGH-CAPACITY; ELECTROLYTE INTERPHASE; LIQUID ELECTROLYTES; CYCLING PERFORMANCE;
D O I
10.1016/j.cej.2023.144592
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Owing to scarce and expensive lithium based energy storage system, sodium ion batteries have gained attention as a potential alternative, leveraging their low cost components including abundant sodium as anode over competing energy storage technologies. However, structural instability, low electronic and ionic conductivity, severe polarization and low operating potential have significantly limited their practical application. The highly oxidative nature, low tap density and temperature instability of prussian blue, poor electronic conductivity of polyanions and iron-based fluoride based cathode materials have severe capacity fading and need to be opti-mized for better electrochemical performance. To overcome these challenges, surface engineering of cathode materials through nanostructured organic and inorganic coating have been explored as a means to improve their performance which provide uniform state of charge distribution and strength to cathode, which facilitates fast transport of electrons and ions and also prevents the transition metals dissolution and undesirable side reactions at the interface of cathode and electrolyte. These nanostructured coatings, made of compounds such as oxides, polyanions, conducting polymers and carbon materials have been widely exploited on various cathodes by using solution-phase mixing, Atomic layer deposition (ALD), Physical vapor deposition (PVD) techniques, etc. This review concludes a systematic comparison of different types of nanostructured coating on cathodes and their impact on electrochemical performance with the aim of exploring the potential for practical application of so-dium ion batteries.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Sodium ion stabilized ammonium vanadate as a high-performance aqueous zinc-ion battery cathode
    Wang, Xuri
    Naveed, Ahmad
    Zeng, Tianyi
    Wan, Tao
    Zhang, Hanwei
    Zhou, Yu
    Dou, Aichun
    Su, Mingru
    Liu, Yunjian
    Chu, Dewei
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [22] Freestanding Cathode Electrode Design for High-Performance Sodium Dual-Ion Battery
    Liao, Hsiang-Ju
    Chen, Yu-Mei
    Kao, Yu -Ting
    An, Ji-Yao
    Lai, Ying-Huang
    Wang, Di-Yan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (44): : 24463 - 24469
  • [23] Investigation of sodium vanadate as a high-performance aqueous zinc-ion battery cathode
    Binghong She
    Lutong Shan
    Huijie Chen
    Jiang Zhou
    Xun Guo
    Guozhao Fang
    Xinxin Cao
    Shuquan Liang
    Journal of Energy Chemistry , 2019, (10) : 172 - 175
  • [24] Facile synthesis and cycling performance maintenance of iron hexacyanoferrate cathode for sodium-ion battery
    Xi, Yuming
    Lu, Yangcheng
    JOURNAL OF POWER SOURCES, 2021, 513
  • [25] A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery
    Xiao, Yao
    Zhu, Yon-Fong
    Yao, Hu-Rong
    Wang, Peng-Fei
    Zhang, Xu-Dong
    Li, Hongliang
    Yang, Xinan
    Gu, Lin
    Li, Yong-Chun
    Wang, Tao
    Yin, Ya-Xia
    Guo, Xiao-Dong
    Zhong, Ben-He
    Guo, Yu-Guo
    ADVANCED ENERGY MATERIALS, 2019, 9 (19)
  • [26] Investigation of sodium vanadate as a high-performance aqueous zinc-ion battery cathode
    She, Binghong
    Shan, Lutong
    Chen, Huijie
    Zhou, Jiang
    Gun, Xun
    Fang, Guozhao
    Cao, Xinxin
    Liang, Shuquan
    JOURNAL OF ENERGY CHEMISTRY, 2019, 37 : 172 - 175
  • [27] Improved Performance of Nano-Sized Polyoxometalate as Lithium-Battery Cathode by Conductive Polymer Coating
    Ni, Erfe
    Tsukada, Tetsuya
    Wen, Qing
    Sonoyama, Noriyuki
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 166 (03) : A5226 - A5230
  • [28] Subzero-Temperature Cathode for a Sodium-Ion Battery
    You, Ya
    Yao, Hu-Rong
    Xin, Sen
    Yin, Ya-Xia
    Zuo, Tong-Tong
    Yang, Chun-Peng
    Guo, Yu-Guo
    Cui, Yi
    Wan, Li-Jun
    Goodenough, John B.
    ADVANCED MATERIALS, 2016, 28 (33) : 7243 - +
  • [29] Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries
    Ding, Jing-Jing
    Zhou, Yong-Ning
    Sun, Qian
    Fu, Zheng-Wen
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 22 : 85 - 88
  • [30] Improved lithium-ion battery cathode rate performance via carbon black functionalization
    Park, Donghyuck
    Sherrell, Peter C.
    Xie, Fangxi
    Ellis, Amanda V.
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (08) : 4884 - 4892