Quantum Shell in a Shell: Engineering Colloidal Nanocrystals for a High-Intensity Excitation Regime

被引:9
|
作者
Harankahage, Dulanjan [1 ,2 ]
Cassidy, James [1 ,2 ]
Beavon, Jacob [2 ]
Huang, Jiamin [1 ,2 ]
Brown, Niamh [3 ]
Berkinsky, David B. [3 ]
Marder, Andrew [4 ]
Kayira, Barbra [2 ]
Montemurri, Michael [2 ]
Anzenbacher, Pavel [1 ,2 ]
Schaller, Richard D. [5 ,6 ]
Sun, Liangfeng [1 ,2 ]
Bawendi, Moungi G. [3 ]
Malko, Anton V. [4 ]
Diroll, Benjamin T. [5 ]
Zamkov, Mikhail [1 ,2 ]
机构
[1] Bowling Green State Univ, Ctr Photochem Sci, Bowling Green, OH 43403 USA
[2] Bowling Green State Univ, Dept Phys, Bowling Green, OH 43403 USA
[3] MIT, Dept Chem, Cambridge, MA 02139 USA
[4] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA
[5] Ctr Nanoscale Mat, Argonne Natl Lab, Lemont, IL 60439 USA
[6] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
OPTICAL GAIN; STIMULATED-EMISSION; DOTS; YIELD; RECOMBINATION; CONFINEMENT; RATES; SIZE;
D O I
10.1021/jacs.3c03397
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Many optoelectronic processes incolloidal semiconductornanocrystals(NCs) suffer an efficiency decline under high-intensity excitation.This issue is caused by Auger recombination of multiple excitons,which converts the NC energy into excess heat, reducing the efficiencyand life span of NC-based devices, including photodetectors, X-rayscintillators, lasers, and high-brightness light-emitting diodes (LEDs).Recently, semiconductor quantum shells (QSs) have emerged as a promisingNC geometry for the suppression of Auger decay; however, their optoelectronicperformance has been hindered by surface-related carrier losses. Here,we address this issue by introducing quantum shells with a CdS-CdSe-CdS-ZnScore-shell-shell-shell multilayer structure.The ZnS barrier inhibits the surface carrier decay, which increasesthe photoluminescence (PL) quantum yield (QY) to 90% while retaininga high biexciton emission QY of 79%. The improved QS morphology allowsdemonstrating one of the longest Auger lifetimes reported for colloidalNCs to date. The reduction of nonradiative losses in QSs also leadsto suppressed blinking in single nanoparticles and low-threshold amplifiedspontaneous emission. We expect that ZnS-encapsulated quantum shellswill benefit many applications exploiting high-power optical or electricalexcitation regimes.
引用
收藏
页码:13326 / 13334
页数:9
相关论文
共 50 条
  • [41] Galvanic Exchange in Colloidal Metal/Metal-Oxide Core/Shell Nanocrystals
    Kriegner, Dominik
    Sytnyk, Mykhailo
    Groiss, Heiko
    Yarema, Maksym
    Grafeneder, Wolfgang
    Walter, Peter
    Dippel, Ann-Christin
    Meffert, Matthias
    Gerthsen, Dagmar
    Stangl, Julian
    Heiss, Wolfgang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (35): : 19848 - 19855
  • [42] Tailoring ZnSe-CdSe Colloidal Quantum Dots via Cation Exchange: From Core/Shell to Alloy Nanocrystals
    Groeneveld, Esther
    Witteman, Leon
    Lefferts, Merel
    Ke, Xiaoxing
    Bals, Sara
    Van Tendeloo, Gustaaf
    Donega, Celso de Mello
    [J]. ACS NANO, 2013, 7 (09) : 7913 - 7930
  • [43] Interdiffusion in core-shell and quantum-dot-quantum-well nanocrystals
    Stirner, T
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (14): : 6715 - 6720
  • [44] Impact of High Ytterbium(III) Concentration in the Shell on Upconversion Luminescence of Core-Shell Nanocrystals
    Lei, Lei
    Chen, Daqin
    Zhu, Wenjuan
    Xu, Ju
    Wang, Yuansheng
    [J]. CHEMISTRY-AN ASIAN JOURNAL, 2014, 9 (10) : 2765 - 2770
  • [45] Photoluminescence properties of InP/GaP/ZnS core/shell/shell colloidal quantum dots treated with halogen acids
    Zhu, Yanqing
    Shen, Cong
    Xu, Xueqing
    Zou, Jianhua
    Wang, Lei
    Cheng, Xudong
    Liang, Jingqiu
    Xiao, Xiudi
    Xu, Gang
    [J]. JOURNAL OF LUMINESCENCE, 2023, 256
  • [46] Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells
    Neo, Darren C. J.
    Cheng, Cheng
    Stranks, Samuel D.
    Fairclough, Simon M.
    Kim, Judy S.
    Kirkland, Angus I.
    Smith, Jason M.
    Snaith, Henry J.
    Assender, Hazel E.
    Watt, Andrew A. R.
    [J]. CHEMISTRY OF MATERIALS, 2014, 26 (13) : 4004 - 4013
  • [47] Sequential synthesis of type II colloidal CdTe/CdSe core-shell nanocrystals
    Yu, K
    Zaman, B
    Romanova, S
    Wang, DS
    Ripmeester, JA
    [J]. SMALL, 2005, 1 (03) : 332 - 338
  • [48] Core/Shell Magnetite/Bismuth Oxide Nanocrystals with Tunable Size, Colloidal, and Magnetic Properties
    Andres-Verges, Manuel
    del Puerto Morales, Maria
    Veintemillas-Verdaguer, Sabino
    Javier Palomares, F.
    Serna, Carlos J.
    [J]. CHEMISTRY OF MATERIALS, 2012, 24 (02) : 319 - 324
  • [49] Ultrafast Carrier Trapping in Thick-Shell Colloidal Quantum Dots
    Jain, Ankit
    Voznyy, Oleksandr
    Korkusinski, Marek
    Hawrylak, Pawel
    Sargent, Edward H.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (14): : 3179 - 3184
  • [50] Rational Design of Colloidal Core/Shell Quantum Dots for Optoelectronic Applications
    Xiang-Long Huang
    Xin Tong
    Zhiming M.Wang
    [J]. Journal of Electronic Science and Technology, 2020, 18 (02) : 105 - 118