Design of projected phase-change memory mushroom cells for low-resistance drift

被引:4
|
作者
Philip, Timothy M. [1 ]
Brew, Kevin W. [1 ]
Li, Ning [1 ]
Simon, Andrew [1 ]
Liu, Zuoguang [1 ]
Ok, Injo [1 ]
Adusumilli, Praneet [1 ]
Saraf, Iqbal [1 ]
Conti, Richard [1 ]
Ogundipe, Odunayo [1 ]
Robison, Robert R. [1 ]
Saulnier, Nicole [1 ]
Sebastian, A. [2 ]
Narayanan, Vijay [1 ]
机构
[1] IBM Res AI Hardware Ctr, Albany, NY 12203 USA
[2] IBM Res Zurich, Ruschlikon, Switzerland
关键词
Artificial intelligence; Memory; Neuromorphic;
D O I
10.1557/s43577-022-00391-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Projected phase-change memory (PCM) devices have been proposed as a solution to the challenge of resistance drift, an issue where PCM cell resistance increases as a function of time. Here, we theoretically and experimentally study the performance of projected mushroom PCM cells. Using circuit models, we show that the effective drift coefficient of projected PCM cells is proportional to the fraction of the current flowing through the drifting material. To further characterize device operation, we utilize a finite element model and find that tuning the projection liner sheet resistance enables a dynamic range, the ratio of the RESET resistance to the SET resistance, of 14 with a thin 2-nm projection liner. Additionally, we show that increasing the doping level provides a useful tuning knob to increase SET and RESET resistance without sacrificing dynamic range or drift performance. We fabricate projected PCM mushroom cells on 300-mm wafers to calibrate the model parameters and find that experimental trends are consistent with these theoretical predictions.
引用
收藏
页码:228 / 236
页数:9
相关论文
共 50 条
  • [41] Thermal Boundary Resistance Measurements for Phase-Change Memory Devices
    Reifenberg, John P.
    Chang, Kuo-Wei
    Panzer, Matthew A.
    Kim, Sangbum
    Rowlette, Jeremy A.
    Asheghi, Mehdi
    Wong, H. -S. Philip
    Goodson, Kenneth E.
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (01) : 56 - 58
  • [42] The impact of thermal boundary resistance in phase-change memory devices
    Reifenberg, John P.
    Kencke, David L.
    Goodson, Kenneth E.
    IEEE ELECTRON DEVICE LETTERS, 2008, 29 (10) : 1112 - 1114
  • [43] Achieving Multiple Resistance States in Phase-Change Memory Cell
    Wang, Ke
    Han, Xiao Dong
    Zhang, Ze
    Wu, Liang Cai
    Liu, Bo
    Song, Zhi Tang
    Feng, Song Lin
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (07)
  • [44] Achieving multiple resistance states in phase-change memory cell
    Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100022, China
    不详
    Jpn. J. Appl. Phys., 7 PART 1
  • [45] A contact resistance model for scanning probe phase-change memory
    Wang, Lei
    Wright, David
    Aziz, Mustafa
    Ying, Jin
    Yang, Guo Wei
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2014, 24 (03)
  • [46] Phase-change memory materials
    Kraft, Arno
    CHEMISTRY & INDUSTRY, 2022, 86 (01) : 43 - 43
  • [47] Quasicrystalline phase-change memory
    Lee, Eun-Sung
    Yoo, Joung E.
    Yoon, Du S.
    Kim, Sung D.
    Kim, Yongjoo
    Hwang, Soobin
    Kim, Dasol
    Jeong, Hyeong-Chai
    Kim, Won T.
    Chang, Hye J.
    Suh, Hoyoung
    Ko, Dae-Hong
    Cho, Choonghee
    Choi, Yongjoon
    Kim, Do H.
    Cho, Mann-Ho
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [48] Interfacial phase-change memory
    Simpson, R. E.
    Fons, P.
    Kolobov, A. V.
    Fukaya, T.
    Krbal, M.
    Yagi, T.
    Tominaga, J.
    NATURE NANOTECHNOLOGY, 2011, 6 (08) : 501 - 505
  • [49] Phase-change memory architectures
    Asadinia, Marjan
    Sarbazi-Azad, Hamid
    DURABLE PHASE-CHANGE MEMORY ARCHITECTURES, 2020, 118 : 29 - 48
  • [50] Quasicrystalline phase-change memory
    Eun-Sung Lee
    Joung E. Yoo
    Du S. Yoon
    Sung D. Kim
    Yongjoo Kim
    Soobin Hwang
    Dasol Kim
    Hyeong-Chai Jeong
    Won T. Kim
    Hye J. Chang
    Hoyoung Suh
    Dae-Hong Ko
    Choonghee Cho
    Yongjoon Choi
    Do H. Kim
    Mann-Ho Cho
    Scientific Reports, 10