Underwater Image Super-Resolution via Dual-aware Integrated Network

被引:5
|
作者
Shi, Aiye [1 ]
Ding, Haimin [1 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing 211100, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 24期
关键词
underwater image; super-resolution; transformer; multi-scale; CONVOLUTIONAL NETWORK; ENHANCEMENT;
D O I
10.3390/app132412985
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Underwater scenes are often affected by issues such as blurred details, color distortion, and low contrast, which are primarily caused by wavelength-dependent light scattering; these factors significantly impact human visual perception. Convolutional neural networks (CNNs) have recently displayed very promising performance in underwater super-resolution (SR). However, the nature of CNN-based methods is local operations, making it difficult to reconstruct rich features. To solve these problems, we present an efficient and lightweight dual-aware integrated network (DAIN) comprising a series of dual-aware enhancement modules (DAEMs) for underwater SR tasks. In particular, DAEMs primarily consist of a multi-scale color correction block (MCCB) and a swin transformer layer (STL). These components work together to incorporate both local and global features, thereby enhancing the quality of image reconstruction. MCCBs can use multiple channels to process the different colors of underwater images to restore the uneven underwater light decay-affected real color and details of the images. The STL captures long-range dependencies and global contextual information, enabling the extraction of neglected features in underwater images. Experimental results demonstrate significant enhancements with a DAIN over conventional SR methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Dual-aware transformer network for single-image super-resolution
    Luo, Zhonghua
    Wang, Li
    Wang, Fengzhou
    Ruan, Yinglan
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
  • [2] Resolution-Aware Network for Image Super-Resolution
    Wang, Yifan
    Wang, Lijun
    Wang, Hongyu
    Li, Peihua
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (05) : 1259 - 1269
  • [3] Dual branches network for image super-resolution
    Matsune, Ai
    Cheng, Guoan
    Zhan, Shu
    ELECTRONICS LETTERS, 2019, 55 (23) : 1229 - 1230
  • [4] Image super-resolution via dynamic network
    Tian, Chunwei
    Zhang, Xuanyu
    Zhang, Qi
    Yang, Mingming
    Ju, Zhaojie
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (04) : 837 - 849
  • [5] Underwater image super-resolution and enhancement via progressive frequency-interleaved network?
    Wang, Li
    Xu, Lizhong
    Tian, Wei
    Zhang, Yunfei
    Feng, Hui
    Chen, Zhe
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 86
  • [6] Single Image Super-Resolution via a Dual Interactive Implicit Neural Network
    Nguyen, Quan H.
    Beksi, William J.
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 4925 - 4934
  • [7] Image Super-Resolution Based on Dual Path Network
    Kuang, Hailan
    Wang, Hongchuan
    Ma, Xiaolin
    Liu, Xinhua
    2018 10TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA), 2018, : 225 - 228
  • [8] Image super-resolution via deep residual network
    Duan, Yakang
    Luo, Lin
    Zhang, Yu
    Zhu, Hongna
    ELEVENTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2019), 2019, 11209
  • [9] IMAGE SUPER-RESOLUTION VIA DEEP AGGREGATION NETWORK
    Wang, Xinya
    Ma, Jiayi
    Jiang, Junjun
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1747 - 1751
  • [10] Hyperspectral Image Super-Resolution via Intrafusion Network
    Hu, Jing
    Jia, Xiuping
    Li, Yunsong
    He, Gang
    Zhao, Minghua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (10): : 7459 - 7471