Intelligent rolling bearing compound fault diagnosis based on frequency-domain Gramian angular field and convolutional neural networks with imbalanced data

被引:0
|
作者
Zhang, Faye [1 ,6 ]
Yao, Peng [1 ]
Geng, Xiangyi [2 ]
Mu, Lin [3 ]
Paitekul, Phanasindh [4 ]
Viyanit, Ekkarut [5 ]
Jiang, Mingshun [1 ]
Jia, Lei [1 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan, Peoples R China
[2] Shandong Univ, Publ Innovat Expt Teaching Ctr, Qingdao, Peoples R China
[3] Shandong Univ, Engn Training Ctr, Jinan, Peoples R China
[4] Thailand Inst Sci & Technol Res, Pathum Thani, Thailand
[5] Natl Sci & Technol Dev Agcy, Khlong Nueng, Thailand
[6] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
bearing compound fault diagnosis; frequency-domain Gramian angular field; convolutional neural networks; instance normalization; efficient channel attention; CLASSIFICATION; MACHINERY;
D O I
10.1177/10775463231224519
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The effective fault feature extraction is the core of rolling bearing fault diagnosis. However, rolling bearings usually operate in normal state and fault duration is very short, which will cause imbalance in fault diagnosis data, thus leading to difficulty in fault feature extraction and low diagnosis accuracy. Meanwhile, mutual interference between multiple fault responses will also lead to poor diagnosis performance. To solve these issues, a novel compound fault diagnosis method with imbalanced data based on frequency-domain Gramian angular field (FGAF) and convolutional neural networks optimized by instance normalization and efficient channel attention (IECNN) is proposed. Firstly, FGAF is adopted to map frequency-domain features of fault signals to the polar coordinate to obtain 2D FGAF feature spectrum. Secondly, an instance normalization module is established to reduce internal covariant shift caused by data distribution discrepancy and improve generalization ability. An efficient channel attention module is constructed to further excavate fault features and improve anti-interference ability. Finally, experiments are conducted under imbalanced dataset and imbalance intensified dataset, and the average accuracy of 99.91% and 99.92% were obtained, respectively, which shows the proposed method has better resistance to data imbalance.
引用
收藏
页码:5522 / 5535
页数:14
相关论文
共 50 条
  • [41] Fault diagnosis of rolling bearing based on online transfer convolutional neural network
    Xu, Quansheng
    Zhu, Bo
    Huo, Hanbing
    Meng, Zong
    Li, Jimeng
    Fan, Fengjie
    Cao, Lixiao
    APPLIED ACOUSTICS, 2022, 192
  • [42] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Xiaochen Zhang
    Hanwen Li
    Weiying Meng
    Yaofeng Liu
    Peng Zhou
    Cai He
    Qingbo Zhao
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [43] Fault Identification Method of Transformer Winding based on Gramian Angular Difference Field and Convolutional Neural Network
    Yang, Shihao
    Li, Zhenhua
    Yang, Xinqiang
    Wu, Hairong
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2024, 17 (08) : 837 - 847
  • [44] A New Bearing Fault Diagnosis Method Based on Capsule Network and Markov Transition Field/Gramian Angular Field
    Han, Bin
    Zhang, Hui
    Sun, Ming
    Wu, Fengtong
    SENSORS, 2021, 21 (22)
  • [45] Bearing Fault Feature Enhancement and Diagnosis Based on Savitzky-Golay Filtering Gramian Angular Field
    Huang, Zhende
    Song, Xuewei
    Liao, Zhiqiang
    Jia, Baozhu
    IEEE ACCESS, 2024, 12 : 87991 - 88005
  • [46] Deep neural networks-based rolling bearing fault diagnosis
    Chen, Zhiqiang
    Deng, Shengcai
    Chen, Xudong
    Li, Chuan
    Sanchez, Rene-Vinicio
    Qin, Huafeng
    MICROELECTRONICS RELIABILITY, 2017, 75 : 327 - 333
  • [47] Bearing Intelligent Fault Diagnosis Based on Wavelet Transform and Convolutional Neural Network
    Guo, Junfeng
    Liu, Xingyu
    Li, Shuangxue
    Wang, Zhiming
    SHOCK AND VIBRATION, 2020, 2020
  • [48] Intelligent Bearing Fault Diagnosis Based on Open Set Convolutional Neural Network
    Zhang, Bo
    Zhou, Caicai
    Li, Wei
    Ji, Shengfei
    Li, Hengrui
    Tong, Zhe
    Ng, See-Kiong
    MATHEMATICS, 2022, 10 (21)
  • [49] An improved graph convolutional networks for fault diagnosis of rolling bearing with limited labeled data
    Xiao, Xiangqu
    Li, Chaoshun
    Huang, Jie
    Yu, Tian
    Wong, Pak Kin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)
  • [50] Frequency-Domain and Spatial-Domain MLMVN-Based Convolutional Neural Networks
    Aizenberg, Igor
    Vasko, Alexander
    ALGORITHMS, 2024, 17 (08)