Automated weak signal detection and prediction using keyword network clustering and graph convolutional network

被引:2
|
作者
Ha, Taehyun [1 ]
Yang, Heyoung [2 ]
Hong, Sungwha [2 ]
机构
[1] Sejong Univ, Dept Data Sci, 209 Neungdong Ro, Seoul 05006, South Korea
[2] Korea Inst Sci & Technol Informat, Future Technol Anal Ctr, 66 Hoegi Ro, Seoul 02456, South Korea
关键词
Weak signal detection; Weak signal prediction; Machine learning; Graph convolutional network; Keyword network clustering; EMERGING TECHNOLOGIES;
D O I
10.1016/j.futures.2023.103202
中图分类号
F [经济];
学科分类号
02 ;
摘要
Weak signals are rarely identified in the initial stage of growth and appear significant over time, unlike strong signals clearly observed in past trends. Weak signals are important cues that need to be analyzed to rapidly and accurately predict changes in the uncertain future. Researchers have developed various methods for identifying cues that can be significantly used for prediction. However, in many cases, they heavily depend on the opinions of experts or are applicable only to weak signals in specific fields. This study proposes a weak signal detection method that extracts weak signals by selecting significant keywords from literature database and grouping relevant keywords. Furthermore, this study presents a weak signal prediction method for predicting the growth of specific weak signals by investigating and learning the growth of the extracted weak signals over 10 years. To verify the proposed method, we extracted weak signals for 10 years (2001-2010) from SCOPUS publication data from 1996 to 2009 and applied machine learning using a graph convolutional network (GCN) model with the growth data of the extracted weak signals. The results showed that the proposed methods can effectively detect and predict weak signals.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Graph Convolutional Network based Link State Prediction
    Yeom, Sungwoong
    Choi, Chulwoong
    Kolekar, Shivani Sanjay
    Kim, Kyungbaek
    2021 22nd Asia-Pacific Network Operations and Management Symposium, APNOMS 2021, 2021, : 246 - 249
  • [32] Dual Scene Graph Convolutional Network for Motivation Prediction
    Wanyan, Yuyang
    Yang, Xiaoshan
    Ma, Xuan
    Xu, Changsheng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (03)
  • [33] Graph Convolutional Network based Link State Prediction
    Yeom, Sungwoong
    Choi, Chulwoong
    Kolekar, Shivani Sanjay
    Kim, Kyungbaek
    2021 22ND ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2021, : 246 - 249
  • [34] A Graph Convolutional Neural Network Model for Trajectory Prediction
    Di, Zichao
    Zhou, Yue
    Chen, Kun
    Chen, Zongzhi
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [35] Automated Detection of Autism Spectrum Disorder Using a Convolutional Neural Network
    Sherkatghanad, Zeinab
    Akhondzadeh, Mohammadsadegh
    Salari, Soorena
    Zomorodi-Moghadam, Mariam
    Abdar, Moloud
    Acharya, U. Rajendra
    Khosrowabadi, Reza
    Solari, Vahid
    FRONTIERS IN NEUROSCIENCE, 2020, 13
  • [36] Automated detection of diabetic retinopathy using optimized convolutional neural network
    S. Jasmine Minija
    M. Anline Rejula
    B. Shamina Ross
    Multimedia Tools and Applications, 2024, 83 : 21065 - 21080
  • [37] Automated detection of diabetic retinopathy using optimized convolutional neural network
    Minija, S. Jasmine
    Rejula, M. Anline
    Ross, B. Shamina
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 21065 - 21080
  • [38] Automated detection of diabetic retinopathy using custom convolutional neural network
    Albahli, Saleh
    Yar, Ghulam Nabi Ahmad Hassan
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2022, 30 (02) : 275 - 291
  • [39] Image Co-Saliency Detection and Instance Co-Segmentation Using Attention Graph Clustering Based Graph Convolutional Network
    Li, Tengpeng
    Zhang, Kaihua
    Shen, Shiwen
    Liu, Bo
    Liu, Qingshan
    Li, Zhu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 492 - 505
  • [40] GCNET: Graph-based prediction of stock price movement using graph convolutional network
    Jafari, Alireza
    Haratizadeh, Saman
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116