Synchronization of memristive FitzHugh-Nagumo neural networks

被引:2
|
作者
You, Yuncheng
Tian, Jing [2 ]
Tu, Junyi [1 ,3 ]
机构
[1] Univ S Florida, Tampa, FL 33620 USA
[2] Towson Univ, Towson, MD 21252 USA
[3] Salisbury Univ, Salisbury, MD 21801 USA
关键词
Memristive FitzHugh-Nagumo equations; Dissipative dynamics; Exponential synchronization; Coupling strength; Neural network;
D O I
10.1016/j.cnsns.2023.107405
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new mathematical model of neural networks described by diffusive FitzHugh-Nagumo equations with memristors and linear synaptic coupling is proposed and investigated. The existence of absorbing set for the solution semiflow in the energy space is proved and global dynamics of the memristive neural networks are dissipative. Through uniform estimates and maneuver of integral inequalities on the interneuron difference equations, it is shown that exponential synchronization of the neural network at a uniform convergence rate occurs if the coupling strength satisfies a threshold condition explicitly expressed by the system parameters, which is illustrated and verified by numerical simulations. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Synchronization numerical simulation of two FitzHugh-Nagumo neurons
    Zhang, SH
    An, HL
    Zhan, Y
    Zhao, TJ
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2005, 6 (04) : 435 - 440
  • [22] Controlled synchronization in two hybrid FitzHugh-Nagumo systems
    Plotnikov, Sergei A.
    Fradkov, Alexander L.
    IFAC PAPERSONLINE, 2016, 49 (14): : 137 - 141
  • [23] Synchronization between FitzHugh-Nagumo neurons coupled with phototube
    Zhang Xiu-Fang
    Ma Jun
    Xu Ying
    Ren Guo-Dong
    ACTA PHYSICA SINICA, 2021, 70 (09)
  • [24] Stochastic excitation and synchronization in coupled FitzHugh-Nagumo elements
    Luchinsky, DG
    McClintock, PVE
    Polovinkin, AV
    Osipov, GV
    NOISE IN COMPLEX SYSTEMS AND STOCHASTIC DYNAMICS, 2003, 5114 : 301 - 308
  • [25] Synchronization and chimeras in a network of photosensitive FitzHugh-Nagumo neurons
    Hussain, Iqtadar
    Jafari, Sajad
    Ghosh, Dibakar
    Perc, Matjaz
    NONLINEAR DYNAMICS, 2021, 104 (03) : 2711 - 2721
  • [26] Analytical and Simulation Results for Stochastic Fitzhugh-Nagumo Neurons and Neural Networks
    Henry C. Tuckwell
    Roger Rodriguez
    Journal of Computational Neuroscience, 1998, 5 : 91 - 113
  • [27] An Analog Implementation of FitzHugh-Nagumo Neuron Model for Spiking Neural Networks
    Borwankar, Raunak
    Desai, Anurag
    Haider, Mohammad R.
    Ludwig, Reinhold
    Massoud, Yehia
    2018 16TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2018, : 134 - 138
  • [28] SYNCHRONIZATION OF THE STOCHASTIC FITZHUGH-NAGUMO EQUATIONS TO PERIODIC FORCING
    LONGTIN, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1995, 17 (7-8): : 835 - 846
  • [29] SYNCHRONIZATION IN A RING OF UNIDIRECTIONALLY COUPLED FITZHUGH-NAGUMO NEURONS
    Bhattacharjee, Anindita
    Das, M. K.
    Ghosh, Subhendu
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2014, 7 (01)
  • [30] LMI-Based Synchronization Criteria for FitzHugh-Nagumo Networks with Delayed Coupling
    Zhang, Qunjiao
    Wei, Yaobin
    2015 SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2015, : 173 - 178