Single-mode waveguides for GRAVITY II. Single-mode fibers and Fiber Control Unit

被引:1
|
作者
Perrin, G. [1 ]
Jocou, L. [2 ]
Perraut, K. [2 ]
Berger, J. -Ph. [2 ]
Dembet, R. [1 ]
Fedou, P. [1 ]
Lacour, S. [1 ]
Chapron, F. [1 ]
Collin, C. [1 ]
Poulain, S. [3 ]
Cardin, V. [3 ]
Joulain, F. [3 ]
Eisenhauer, F. [4 ]
Haubois, X. [5 ]
Gillessen, S. [4 ]
Haug, M. [5 ]
Hausmann, F. [4 ]
Kervella, P. [1 ]
Lena, P. [1 ]
Lippa, M. [4 ]
Pfuhl, O. [5 ]
Rabien, S. [4 ]
Amorim, A. [6 ]
Brandner, W. [7 ]
Straubmeier, C. [8 ]
机构
[1] Univ Paris, Univ PSL, Sorbonne Univ, LESIA,Observ Paris,CNRS, 5 Pl Jules Janssen, F-92195 Meudon, France
[2] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
[3] Le Verre Fluore, Rue Gabriel Voisin, F-35170 Bruz, France
[4] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85741 Garching, Germany
[5] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany
[6] Inst Super Tecn, CENTRA, Av Rovisco Pais, P-1049001 Lisbon, Portugal
[7] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[8] Univ Cologne, I Phys Inst, Zulpicher Str 77, D-50937 Cologne, Germany
关键词
instrumentation: high angular resolution; instrumentation: interferometers; OPTICAL-FIBER; INTERFEROMETRY; MINIMIZATION; DISPERSION; CURVATURE; PIONIER;
D O I
10.1051/0004-6361/202347587
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The second generation Very Large Telescope Interferometer (VLTI) instrument GRAVITY is a two-field infrared interferometer operating in the K band between 1.97 and 2.43 mu m with either the four 8 m or the four 1.8 m telescopes of the Very Large Telescope (VLT). Beams collected by the telescopes are corrected with adaptive optics systems and the fringes are stabilized with a fringe-tracking system. A metrology system allows the measurement of internal path lengths in order to achieve high-accuracy astrometry. High sensitivity and high interferometric accuracy are achieved thanks to (i) correction of the turbulent phase, (ii) the use of low-noise detectors, and (iii) the optimization of photometric and coherence throughput. Beam combination and most of the beam transport are performed with single-mode waveguides in vacuum and at low temperature. In this paper, we present the functions and performance achieved with weakly birefringent standard single-mode fiber systems in GRAVITY. Fibered differential delay lines (FDDLs) are used to dynamically compensate for up to 6 mm of delay between the science and reference targets. Fibered polarization rotators allow us to align polarizations in the instrument and make the single-mode beam combiner close to polarization neutral. The single-mode fiber system exhibits very low birefringence (less than 23(degrees)), very low attenuation (3.6-7 dB km(-1) across the K band), and optimized differential dispersion (less than 2.04 mu rad cm(2) at zero extension of the FDDLs). As a consequence, the typical fringe contrast losses due to the single-mode fibers are 6% to 10% in the lowest-resolution mode and 5% in the medium- and high-resolution modes of the instrument for a photometric throughput of the fiber chain of the order of 90%. There is no equivalent of this fiber system to route and modally filter beams with delay and polarization control in any other K-band beamcombiner.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] SINGLE-MODE FIBER OPTICAL WAVEGUIDES.
    Grigor'yants, V.V.
    Zhabotinskiy, M.E.
    Detinich, V.A.
    Zamyatin, A.A.
    Mertsalov, S.A.
    Koreneva, N.A.
    Mertsalov, S.A.
    [J]. Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 1982, 36-37 (02): : 84 - 87
  • [2] SINGLE-MODE FIBER OPTICAL-WAVEGUIDES
    GRIGORYANTS, VV
    ZHABOTINSKIY, ME
    DETINICH, VA
    ZAMYATIN, AA
    IVANOV, GA
    KORENEVA, NA
    MERTSALOV, SA
    [J]. TELECOMMUNICATIONS AND RADIO ENGINEERING, 1982, 36-7 (02) : 84 - 87
  • [3] COUPLING OF SINGLE-MODE TI-DIFFUSED LINBO3 WAVEGUIDES TO SINGLE-MODE FIBERS
    KEIL, R
    AURACHER, F
    [J]. OPTICS COMMUNICATIONS, 1979, 30 (01) : 23 - 28
  • [4] Fiber Raman amplification with single-mode fibers
    Qian, Y
    Povlsen, JH
    Knudsen, SN
    Grüner-Nielsen, L
    [J]. OPTICAL AMPLIFIERS AND THEIR APPLICATIONS, PROCEEDINGS, 2001, 44 : 128 - 134
  • [5] SINGLE-MODE COUPLING BETWEEN FIBERS AND INDIFFUSED WAVEGUIDES
    HSU, HP
    MILTON, AF
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1977, 13 (04) : 224 - 233
  • [6] Transformation properties of single-mode amplifying fiber waveguides
    Zolotov, AV
    Zolotovskii, IO
    Sementsov, DI
    [J]. JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2002, 47 (06) : 672 - 676
  • [7] OPTOACOUSTIC CHARACTERISTICS OF SINGLE-MODE FIBER WAVEGUIDES.
    Bershtein, I.L.
    Bunkin, F.V.
    Grudinin, A.N.
    Gur'yanov, A.N.
    Gusovskii, D.D.
    Dianov, E.M.
    Zaitsev, Yu.I.
    Karaevskii, S.Kh.
    Kuz'kin, V.M.
    Leonov, V.I.
    Mashinskii, V.M.
    Minchenko, A.I.
    Neustruev, V.B.
    Petnikov, V.G.
    [J]. Soviet journal of quantum electronics, 1982, 12 (12): : 1660 - 1661
  • [8] BACKSCATTERING IN SINGLE-MODE FIBERS
    BRINKMEYER, E
    [J]. ELECTRONICS LETTERS, 1980, 16 (09) : 329 - 330
  • [9] TAPERED SINGLE-MODE FIBERS
    LACROIX, S
    GONTHIER, F
    BURES, J
    [J]. ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 1988, 43 (1-2): : 43 - 47
  • [10] BIREFRINGENT SINGLE-MODE FIBERS
    KAMINOW, IP
    [J]. AMERICAN CERAMIC SOCIETY BULLETIN, 1980, 59 (03): : 342 - 342