Automorphism group of 2-token graph of the Hamming graph

被引:0
|
作者
Zhang, Ju [1 ]
Zhou, Jin-Xin [1 ]
Lee, Jaeun [2 ]
Li, Yan-Tao [3 ]
Xie, Jin-Hua [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Yeungnam Univ, Dept Math, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
[3] Beijing Union Univ, Coll Appl Arts & Sci, Dept Urban Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Hamming graph; 2-token graphs; Automorphism group;
D O I
10.1016/j.disc.2023.113689
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph. The 2 -token graph F2(G) of G is with vertex set all the 2-subsets of V (G) such that two 2-subsets are adjacent if their symmetric difference is exactly an edge of G. In this paper, the full automorphism group of the 2-token graph of the Hamming graph is determined. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] THE AUTOMORPHISM GROUP OF A GRAPH PRODUCT WITH NO SIL
    Charney, Ruth
    Ruane, Kim
    Stambaugh, Nathaniel
    Vijayan, Anna
    ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (01) : 249 - 262
  • [22] The automorphism group of the graph of an R class
    Stephen, JB
    SEMIGROUP FORUM, 1996, 53 (03) : 387 - 389
  • [23] Automorphism Group of the Varietal Hypercube Graph
    Wang, Yi
    Feng, Yan-Quan
    Zhou, Jin-Xin
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1131 - 1137
  • [24] The automorphism group of the bipartite Kneser graph
    S Morteza Mirafzal
    Proceedings - Mathematical Sciences, 2019, 129
  • [25] Automorphism Group of the Varietal Hypercube Graph
    Yi Wang
    Yan-Quan Feng
    Jin-Xin Zhou
    Graphs and Combinatorics, 2017, 33 : 1131 - 1137
  • [26] Automorphism group of the complete transposition graph
    Ashwin Ganesan
    Journal of Algebraic Combinatorics, 2015, 42 : 793 - 801
  • [27] Automorphism group of the complete transposition graph
    Ganesan, Ashwin
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) : 793 - 801
  • [28] The automorphism group of a graph product of groups
    Pettet, MR
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4691 - 4708
  • [29] Upper bounds on the automorphism group of a graph
    Krasikov, I
    Lev, A
    Thatte, BD
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 489 - 493
  • [30] New exact and heuristic algorithms for graph automorphism group and graph isomorphism
    Stoichev S.D.
    ACM Journal of Experimental Algorithmics, 2019, 24 (01):