SARS-CoV-2 restructures host chromatin architecture

被引:33
|
作者
Wang, Ruoyu [1 ,2 ]
Lee, Joo-Hyung [1 ]
Kim, Jieun [3 ,4 ]
Xiong, Feng [1 ]
Hasani, Lana Al [1 ,2 ]
Shi, Yuqiang [1 ]
Simpson, Erin N. [1 ,2 ]
Zhu, Xiaoyu [1 ]
Chen, Yi-Ting [1 ,2 ]
Shivshankar, Pooja [1 ,3 ,4 ]
Krakowiak, Joanna [1 ]
Wang, Yanyu [3 ,4 ]
Gilbert, David M. [5 ]
Yuan, Xiaoyi [3 ,4 ]
Eltzschig, Holger K. [2 ,3 ,4 ]
Li, Wenbo [1 ,2 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Biochem & Mol Biol, Houston, TX 77225 USA
[2] Univ Texas Hlth Sci Ctr Houston, Univ Texas MD Anderson Canc Ctr, UTHealth Houston Grad Sch Biomed Sci, Houston, TX 77225 USA
[3] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Anesthesiol Crit Care & Pain Med, Houston, TX USA
[4] Univ Texas Hlth Sci Ctr Houston, Ctr Perioperat Med, McGovern Med Sch, Houston, TX USA
[5] San Diego Biomed Res Inst, Lab Chromosome Replicat & Epigenome Regulat, San Diego, CA USA
关键词
COHESIN; ORGANIZATION; MECHANISMS;
D O I
10.1038/s41564-023-01344-8
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Some viruses restructure host chromatin, influencing gene expression, with implications for disease outcome. Whether this occurs for SARS-CoV-2, the virus causing COVID-19, is largely unknown. Here we characterized the 3D genome and epigenome of human cells after SARS-CoV-2 infection, finding widespread host chromatin restructuring that features widespread compartment A weakening, A-B mixing, reduced intra-TAD contacts and decreased H3K27ac euchromatin modification levels. Such changes were not found following common-cold-virus HCoV-OC43 infection. Intriguingly, the cohesin complex was notably depleted from intra-TAD regions, indicating that SARS-CoV-2 disrupts cohesin loop extrusion. These altered 3D genome/epigenome structures correlated with transcriptional suppression of interferon response genes by the virus, while increased H3K4me3 was found in the promoters of pro-inflammatory genes highly induced during severe COVID-19. These findings show that SARS-CoV-2 acutely rewires host chromatin, facilitating future studies of the long-term epigenomic impacts of its infection.
引用
收藏
页码:679 / +
页数:40
相关论文
共 50 条
  • [21] Molecular Architecture of the SARS-CoV-2 Virus
    Yao, Hangping
    Song, Yutong
    Chen, Yong
    Wu, Nanping
    Xu, Jialu
    Sun, Chujie
    Zhang, Jiaxing
    Weng, Tianhao
    Zhang, Zheyuan
    Wu, Zhigang
    Cheng, Linfang
    Shi, Danrong
    Lu, Xiangyun
    Lei, Jianlin
    Crispin, Max
    Shi, Yigong
    Li, Lanjuan
    Li, Sai
    CELL, 2020, 183 (03) : 730 - +
  • [22] Author Correction: Genetic architecture of host proteins involved in SARS-CoV-2 infection
    Maik Pietzner
    Eleanor Wheeler
    Julia Carrasco-Zanini
    Johannes Raffler
    Nicola D. Kerrison
    Erin Oerton
    Victoria P. W. Auyeung
    Jian’an Luan
    Chris Finan
    Juan P. Casas
    Rachel Ostroff
    Steve A. Williams
    Gabi Kastenmüller
    Markus Ralser
    Eric R. Gamazon
    Nicholas J. Wareham
    Aroon D. Hingorani
    Claudia Langenberg
    Nature Communications, 12
  • [23] Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV
    Alexey Stukalov
    Virginie Girault
    Vincent Grass
    Ozge Karayel
    Valter Bergant
    Christian Urban
    Darya A. Haas
    Yiqi Huang
    Lila Oubraham
    Anqi Wang
    M. Sabri Hamad
    Antonio Piras
    Fynn M. Hansen
    Maria C. Tanzer
    Igor Paron
    Luca Zinzula
    Thomas Engleitner
    Maria Reinecke
    Teresa M. Lavacca
    Rosina Ehmann
    Roman Wölfel
    Jörg Jores
    Bernhard Kuster
    Ulrike Protzer
    Roland Rad
    John Ziebuhr
    Volker Thiel
    Pietro Scaturro
    Matthias Mann
    Andreas Pichlmair
    Nature, 2021, 594 : 246 - 252
  • [24] Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV
    Stukalov, Alexey
    Girault, Virginie
    Grass, Vincent
    Karayel, Ozge
    Bergant, Valter
    Urban, Christian
    Haas, Darya A.
    Huang, Yiqi
    Oubraham, Lila
    Wang, Anqi
    Hamad, M. Sabri
    Piras, Antonio
    Hansen, Fynn M.
    Tanzer, Maria C.
    Paron, Igor
    Zinzula, Luca
    Engleitner, Thomas
    Reinecke, Maria
    Lavacca, Teresa M.
    Ehmann, Rosina
    Woelfel, Roman
    Jores, Joerg
    Kuster, Bernhard
    Protzer, Ulrike
    Rad, Roland
    Ziebuhr, John
    Thiel, Volker
    Scaturro, Pietro
    Mann, Matthias
    Pichlmair, Andreas
    NATURE, 2021, 594 (7862) : 246 - +
  • [25] SARS-CoV-2 and the host-immune response
    Maison, David P.
    Deng, Youping
    Gerschenson, Mariana
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [26] How SARS-CoV-2 changes Host Cells
    Krome, Susanne
    TRANSFUSIONSMEDIZIN, 2020, 10 (03) : 131 - 131
  • [27] Host proviral and antiviral factors for SARS-CoV-2
    Lv, Lu
    Zhang, Leiliang
    VIRUS GENES, 2021, 57 (06) : 475 - 488
  • [28] SARS-CoV-2: virus dynamics and host response
    Chen, Yu
    Li, Lanjuan
    LANCET INFECTIOUS DISEASES, 2020, 20 (05): : 515 - 516
  • [29] SARS-CoV-2 and the Host Cell: A Tale of Interactions
    Pizzato, Massimo
    Baraldi, Chiara
    Sopetto, Giulia Boscato
    Finozzi, Davide
    Gentile, Carmelo
    Gentile, Michele Domenico
    Marconi, Roberta
    Paladino, Dalila
    Raoss, Alberto
    Riedmiller, Ilary
    Ur Rehman, Hamza
    Santini, Annalisa
    Succetti, Valerio
    Volpini, Lorenzo
    FRONTIERS IN VIROLOGY, 2022, 1
  • [30] Host antiviral proteins hijacked by SARS-CoV-2
    Devi, Sharmila
    LANCET INFECTIOUS DISEASES, 2022, 22 (07): : 953 - 953