Multimodal cross enhanced fusion network for diagnosis of Alzheimer?s disease and

被引:4
|
作者
Leng, Yilin [1 ,2 ]
Cui, Wenju [2 ,3 ]
Peng, Yunsong [4 ]
Yan, Caiying [5 ]
Cao, Yuzhu [2 ,3 ]
Yan, Zhuangzhi [1 ]
Chen, Shuangqing [5 ]
Jiang, Xi [6 ]
Zheng, Jian [2 ,3 ]
机构
[1] Shanghai Univ, Inst Biomed Engn, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Dept Med Imaging, Suzhou 215163, Peoples R China
[3] Univ Sci & Technol China, Sch Biomed Engn Suzhou, Div Life Sci & Med, Hefei 230026, Peoples R China
[4] Guizhou Prov Peoples Hosp, Dept Med Imaging, Int Exemplary Cooperat Base Precis Imaging Diag &, Guizhou 550002, Peoples R China
[5] Nanjing Med Univ, Dept Radiol, Affiliated Suzhou Hosp, Suzhou 211103, Peoples R China
[6] Univ Elect Sci & Technol China, Clin Hosp Chengdu Brain Sci Inst, Sch Life Sci & Technol, MOE Key Lab Neuroinformat, Chengdu 611731, Peoples R China
关键词
Alzheimer?s disease (AD) diagnosis; Multiscale long-range receptive field; Cross enhanced fusion; Subjective memory complaints (SMC) diagnosis; MRI;
D O I
10.1016/j.compbiomed.2023.106788
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning methods using multimodal imagings have been proposed for the diagnosis of Alzheimer's disease (AD) and its early stages (SMC, subjective memory complaints), which may help to slow the progression of the disease through early intervention. However, current fusion methods for multimodal imagings are generally coarse and may lead to suboptimal results through the use of shared extractors or simple downscaling stitching. Another issue with diagnosing brain diseases is that they often affect multiple areas of the brain, making it important to consider potential connections throughout the brain. However, traditional convolutional neural networks (CNNs) may struggle with this issue due to their limited local receptive fields. To address this, many researchers have turned to transformer networks, which can provide global information about the brain but can be computationally intensive and perform poorly on small datasets. In this work, we propose a novel lightweight network called MENet that adaptively recalibrates the multiscale long-range receptive field to localize discriminative brain regions in a computationally efficient manner. Based on this, the network extracts the intensity and location responses between structural magnetic resonance imagings (sMRI) and 18-Fluoro-Deoxy-Glucose Positron Emission computed Tomography (FDG-PET) as an enhancement fusion for AD and SMC diagnosis. Our method is evaluated on the publicly available ADNI datasets and achieves 97.67% accuracy in AD diagnosis tasks and 81.63% accuracy in SMC diagnosis tasks using sMRI and FDG-PET. These results achieve state-of-the-art (SOTA) performance in both tasks. To the best of our knowledge, this is one of the first deep learning research methods for SMC diagnosis with FDG-PET.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Multimodal attention-based deep learning for Alzheimer's disease diagnosis
    Golovanevsky, Michal
    Eickhoff, Carsten
    Singh, Ritambhara
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2022, 29 (12) : 2014 - 2022
  • [42] Explainable Deep-Learning-Based Diagnosis of Alzheimer’s Disease Using Multimodal Input Fusion of PET and MRI Images
    Modupe Odusami
    Rytis Maskeliūnas
    Robertas Damaševičius
    Sanjay Misra
    [J]. Journal of Medical and Biological Engineering, 2023, 43 : 291 - 302
  • [43] Explainable Deep-Learning-Based Diagnosis of Alzheimer's Disease Using Multimodal Input Fusion of PET and MRI Images
    Odusami, Modupe
    Maskeliunas, Rytis
    Damasevicius, Robertas
    Misra, Sanjay
    [J]. JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2023, 43 (03) : 291 - 302
  • [44] Multimodal Neuroimaging Feature Learning With Multimodal Stacked Deep Polynomial Networks for Diagnosis of Alzheimer's Disease
    Shi, Jun
    Zheng, Xiao
    Li, Yan
    Zhang, Qi
    Ying, Shihui
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (01) : 173 - 183
  • [45] Multimodal Representations Learning and Adversarial Hypergraph Fusion for Early Alzheimer's Disease Prediction
    Zuo, Qiankun
    Lei, Baiying
    Shen, Yanyan
    Liu, Yong
    Feng, Zhiguang
    Wang, Shuqiang
    [J]. PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 479 - 490
  • [46] Alzheimer's Disease Diagnosis Using Enhanced Inception Network Based on Brain Magnetic Resonance Image
    Cui, Zhenyu
    Gao, Zhiao
    Leng, Jiaxu
    Zhang, Tianlin
    Quan, Pei
    Zhao, Wei
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 2324 - 2330
  • [47] A multimodal fusion method for Alzheimer's disease based on DCT convolutional sparse representation
    Zhang, Guo
    Nie, Xixi
    Liu, Bangtao
    Yuan, Hong
    Li, Jin
    Sun, Weiwei
    Huang, Shixin
    [J]. FRONTIERS IN NEUROSCIENCE, 2023, 16
  • [48] EEG and MRI Data Fusion for Early Diagnosis of Alzheimer's Disease
    Patel, Tejash
    Polikar, Robi
    Davatzikos, Christos
    Clark, Christopher M.
    [J]. 2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 1757 - +
  • [49] Hierarchical Fusion of Features and Classifier Decisions for Alzheimer's Disease Diagnosis
    Liu, Manhua
    Zhang, Daoqiang
    Shen, Dinggang
    [J]. HUMAN BRAIN MAPPING, 2014, 35 (04) : 1305 - 1319
  • [50] Ensemble based data fusion for early diagnosis of Alzheimer's disease
    Parikh, Devi
    Stepenosky, Nick
    Topalis, Apostolos
    Green, Deborah
    Kounios, John
    Clark, Christopher
    Polikar, Robi
    [J]. 2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 2479 - 2482