A residual bootstrap for conditional Value-at-Risk

被引:3
|
作者
Beutner, Eric [1 ]
Heinemann, Alexander [2 ]
Smeekes, Stephan [3 ]
机构
[1] Vrije Univ Amsterdam, Dept Econometr & Data Sci, Boelelaan 1105, NL-1081 HV Amsterdam, Netherlands
[2] ASR, Archimedeslaan 10, NL-3584 BA Utrecht, Netherlands
[3] Maastricht Univ, Dept Quantitat Econ, Tongersestraat 53, NL-6211 LM Maastricht, Netherlands
关键词
Residual bootstrap; Value-at-Risk; GARCH; MAXIMUM-LIKELIHOOD-ESTIMATION; OF-FIT TEST; CONFIDENCE-INTERVALS; WILD BOOTSTRAP; GARCH; VOLATILITY; HETEROSKEDASTICITY; VARIANCE; RETURNS; MODEL;
D O I
10.1016/j.jeconom.2023.105554
中图分类号
F [经济];
学科分类号
02 ;
摘要
A fixed-design residual bootstrap method is proposed for the two-step estimator of Francq and Zakoian(2015) associated with the conditional Value-at-Risk. The bootstrap's consistency is proven for a general class of volatility models and intervals are constructed for the conditional Value-at-Risk. A simulation study reveals that the equal-tailed percentile bootstrap interval tends to fall short of its nominal value. In contrast, the reversed-tails bootstrap interval yields accurate coverage. We also compare the theoretically analyzed fixed-design bootstrap with the recursivedesign bootstrap. It turns out that the fixed-design bootstrap performs equally well in terms of average coverage, yet leads on average to shorter intervals in smaller samples. An empirical application illustrates the interval estimation.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Efficiently Backtesting Conditional Value-at-Risk and Conditional Expected Shortfall
    Su, Qihui
    Qin, Zhongling
    Peng, Liang
    Qin, Gengsheng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (536) : 2041 - 2052
  • [22] Conditional Value-at-Risk: Structure and complexity of equilibria
    Mavronicolas, Marios
    Monien, Burkhard
    THEORETICAL COMPUTER SCIENCE, 2020, 807 : 266 - 283
  • [23] Suboptimality in portfolio conditional value-at-risk optimization
    Jakobsons, Edgars
    JOURNAL OF RISK, 2016, 18 (04): : 1 - 23
  • [24] On multivariate extensions of the conditional Value-at-Risk measure
    Di Bernardino, E.
    Fernandez-Ponce, J. M.
    Palacios-Rodriguez, F.
    Rodriguez-Grinolo, M. R.
    INSURANCE MATHEMATICS & ECONOMICS, 2015, 61 : 1 - 16
  • [25] Conditional Value-at-Risk: Semiparametric estimation and inference
    Wang, Chuan-Sheng
    Zhao, Zhibiao
    JOURNAL OF ECONOMETRICS, 2016, 195 (01) : 86 - 103
  • [26] Optimizing the conditional value-at-risk in revenue management
    Goensch, Jochen
    Hassler, Michael
    REVIEW OF MANAGERIAL SCIENCE, 2014, 8 (04) : 495 - 521
  • [27] Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo
    Hong, L. Jeff
    Hu, Zhaolin
    Zhang, Liwei
    INFORMS JOURNAL ON COMPUTING, 2014, 26 (02) : 385 - 400
  • [28] Optimizing conditional value-at-risk in dynamic pricing
    Jochen Gönsch
    Michael Hassler
    Rouven Schur
    OR Spectrum, 2018, 40 : 711 - 750
  • [29] Robust Conditional Variance and Value-at-Risk Estimation
    Dupuis, Debbie J.
    Papageorgiou, Nicolas
    Remillard, Bruno
    JOURNAL OF FINANCIAL ECONOMETRICS, 2015, 13 (04) : 896 - 921
  • [30] Asymptotic behavior of the empirical conditional value-at-risk
    Gao, Fuqing
    Wang, Shaochen
    INSURANCE MATHEMATICS & ECONOMICS, 2011, 49 (03): : 345 - 352