Periodic and solitary waves in a Korteweg-de Vries equation with delay

被引:0
|
作者
Qiao, Qi [1 ]
Yan, Shuling [2 ]
Zhang, Xiang [3 ,4 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Jiangsu, Peoples R China
[2] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, CMA Shanghai, Shanghai 200240, Peoples R China
基金
国家重点研发计划;
关键词
Korteweg-de Vries equation with delay; periodic wave; solitary wave; geometric singular perturbation theory; Abelian integral; SINGULAR PERTURBATION-THEORY; TRAVELING-WAVES; EXISTENCE; STABILITY; KDV; DYNAMICS;
D O I
10.1017/prm.2023.88
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a perturbed generalized Korteweg-de Vries equation with a distributed delay, we prove the existence of both periodic and solitary waves by using the geometric singular perturbation theory and the Melnikov method. We further obtain monotonicity and boundedness of the speed of the periodic wave with respect to the total energy of the unperturbed system. Finally, we establish a relation between the wave speed and the wavelength.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [22] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    [J]. Acta Applicandae Mathematicae, 2012, 118 : 25 - 47
  • [23] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Jia, Chaohua
    Zhang, Bing-Yu
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 25 - 47
  • [24] ASYMPTOTIC DESCRIPTION OF SOLUTIONS OF SLOWLY VARIABLE PERIODIC WAVES FOR KORTEWEG-DE VRIES EQUATION
    GATIGNOL, P
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (25): : 1861 - &
  • [25] Instability of periodic waves for the Korteweg-de Vries-Burgers equation with monostable source
    Folino, Raffaele
    Naumkina, Anna
    Plaza, Ramon G.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 467
  • [26] Change of Polarity for Periodic Waves in the Variable-Coefficient Korteweg-de Vries Equation
    Grimshaw, Roger
    [J]. STUDIES IN APPLIED MATHEMATICS, 2015, 134 (03) : 363 - 371
  • [27] Periodic and almost periodic solutions for the damped Korteweg-de Vries equation
    Chen, Mo
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7554 - 7565
  • [28] Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain
    Laurent, Camille
    Rosier, Lionel
    Zhang, Bing-Yu
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (04) : 707 - 744
  • [29] Periodic and rational solutions of modified Korteweg-de Vries equation
    Chowdury, Amdad
    Ankiewicz, Adrian
    Akhmediev, Nail
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (05): : 1 - 7
  • [30] Periodic and rational solutions of modified Korteweg-de Vries equation
    Amdad Chowdury
    Adrian Ankiewicz
    Nail Akhmediev
    [J]. The European Physical Journal D, 2016, 70