Bridging the Reality Gap in Quantum Devices with Physics-Aware Machine Learning

被引:2
|
作者
Craig, D. L. [1 ]
Moon, H. [1 ]
Fedele, F. [1 ]
Lennon, D. T. [1 ]
van Straaten, B. [1 ]
Vigneau, F. [1 ]
Camenzind, L. C. [2 ]
Zumbuehl, D. M. [2 ]
Briggs, G. A. D. [1 ,3 ,4 ]
Osborne, M. A. [3 ]
Sejdinovic, D. [4 ]
Ares, N. [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, Oxfordshire, England
[2] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[3] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, Oxfordshire, England
[4] Univ Oxford, Dept Stat, 24-29 St Giles, Oxford OX1 3LB, Oxfordshire, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
All Open Access; Gold;
D O I
10.1103/PhysRevX.14.011001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The discrepancies between reality and simulation impede the optimization and scalability of solid-state quantum devices. Disorder induced by the unpredictable distribution of material defects is one of the major contributions to the reality gap. We bridge this gap using physics-aware machine learning, in particular, using an approach combining a physical model, deep learning, Gaussian random field, and Bayesian inference. This approach enables us to infer the disorder potential of a nanoscale electronic device from electron-transport data. This inference is validated by verifying the algorithm's predictions about the gate-voltage values required for a laterally defined quantum-dot device in AlGaAs/GaAs to produce current features corresponding to a double-quantum-dot regime.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Bridging the Gap between Human Knowledge and Machine Learning
    Alvarado-Perez, Juan C.
    Peluffo-Ordonez, Diego H.
    Theron, Roberto
    [J]. ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2015, 4 (01): : 54 - 64
  • [32] Learning in Virtual Reality: Bridging the Motivation Gap by Adding Annotations
    Vogt, Andrea
    Albus, Patrick
    Seufert, Tina
    [J]. FRONTIERS IN PSYCHOLOGY, 2021, 12
  • [33] Rubik's Optical Neural Networks: Multi-task Learning with Physics-aware Rotation Architecture
    Li, Yingjie
    Gao, Weilu
    Yu, Cunxi
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 7197 - +
  • [34] Physics-Aware Learning-Based Vehicle Trajectory Prediction of Congested Traffic in a Connected Vehicle Environment
    Yao, Handong
    Li, Xiaopeng
    Yang, Xianfeng
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (01) : 102 - 112
  • [35] Self-supervised learning with physics-aware neural networks - I. Galaxy model fitting
    Aragon-Calvo, M. A.
    Carvajal, J. C.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (03) : 3713 - 3719
  • [36] Quantum machine learning in high energy physics
    Guan, Wen
    Perdue, Gabriel
    Pesah, Arthur
    Schuld, Maria
    Terashi, Koji
    Vallecorsa, Sofia
    Vlimant, Jean-Roch
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [37] Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data
    Prakash, Aayush
    Boochoon, Shaad
    Brophy, Mark
    Acuna, David
    Cameracci, Eric
    Stale, Gavriel
    Shapira, Omer
    Birchfield, Stan
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 7249 - 7255
  • [38] Bridging the complexity gap in computational heterogeneous catalysis with machine learning
    Mou, Tianyou
    Pillai, Hemanth Somarajan
    Wang, Siwen
    Wan, Mingyu
    Han, Xue
    Schweitzer, Neil M.
    Che, Fanglin
    Xin, Hongliang
    [J]. NATURE CATALYSIS, 2023, 6 (02) : 122 - 136
  • [39] Towards Bridging the Gap between Machine Learning Researchers and Practitioners
    Assem, Haytham
    O'Sullivan, Declan
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 702 - 708
  • [40] Bridging the gap: Machine learning to resolve improperly modeled dynamics
    Qraitem, Maan
    Kularatne, Dhanushka
    Forgoston, Eric
    Hsieh, M. Ani
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2020, 414