Bridging the Reality Gap in Quantum Devices with Physics-Aware Machine Learning

被引:2
|
作者
Craig, D. L. [1 ]
Moon, H. [1 ]
Fedele, F. [1 ]
Lennon, D. T. [1 ]
van Straaten, B. [1 ]
Vigneau, F. [1 ]
Camenzind, L. C. [2 ]
Zumbuehl, D. M. [2 ]
Briggs, G. A. D. [1 ,3 ,4 ]
Osborne, M. A. [3 ]
Sejdinovic, D. [4 ]
Ares, N. [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, Oxfordshire, England
[2] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[3] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, Oxfordshire, England
[4] Univ Oxford, Dept Stat, 24-29 St Giles, Oxford OX1 3LB, Oxfordshire, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Aluminum gallium arsenide - Bayesian networks - Deep learning - Electron transport properties - Gallium compounds - Gaussian distribution - Inference engines - Nanocrystals;
D O I
10.1103/PhysRevX.14.011001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The discrepancies between reality and simulation impede the optimization and scalability of solid-state quantum devices. Disorder induced by the unpredictable distribution of material defects is one of the major contributions to the reality gap. We bridge this gap using physics-aware machine learning, in particular, using an approach combining a physical model, deep learning, Gaussian random field, and Bayesian inference. This approach enables us to infer the disorder potential of a nanoscale electronic device from electron-transport data. This inference is validated by verifying the algorithm's predictions about the gate-voltage values required for a laterally defined quantum-dot device in AlGaAs/GaAs to produce current features corresponding to a double-quantum-dot regime.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Physics-aware training for the physical machine learning model building
    Sun, Xuecong
    Yang, Yuzhen
    Jia, Han
    Yang, Jun
    [J]. INNOVATION, 2022, 3 (05):
  • [2] Embodying Physics-Aware Avatars in Virtual Reality
    Tao, Yujie
    Wang, Cheng Yao
    Wilson, Andrew D.
    Ofek, Eyal
    Gonzalez-Franco, Mar
    [J]. PROCEEDINGS OF THE 2023 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2023, 2023,
  • [3] Knowledge Guided Machine Learning for Extracting, Preserving, and Adapting Physics-aware Features
    He, Erhu
    Xie, Yiqun
    Liu, Licheng
    Jin, Zhenong
    Zhang, Dajun
    Ha, Xiaowei
    [J]. PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 715 - 723
  • [4] Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence
    Zubatiuk, Tetiana
    Isayev, Olexandr
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (07) : 1575 - 1585
  • [5] Physics-Aware Predictive Models for Tunable Photonics Devices
    Zhao, Zhenyu
    Zhang, Yujia
    Guo, Xuhan
    Su, Yikai
    [J]. 2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 1448 - 1452
  • [6] Physics-aware machine learning surrogates for real-time manufacturing digital twin
    Balu, Aditya
    Sarkar, Soumik
    Ganapathysubramanian, Baskar
    Krishnamurthy, Adarsh
    [J]. MANUFACTURING LETTERS, 2022, 34 : 71 - 74
  • [7] A Physics-Aware Machine Learning-Based Framework for Minimizing Prediction Uncertainty of Hydrological Models
    Roy, Abhinanda
    Kasiviswanathan, K. S.
    Patidar, Sandhya
    Adeloye, Adebayo J. J.
    Soundharajan, Bankaru-Swamy
    Ojha, Chandra Shekhar P.
    [J]. WATER RESOURCES RESEARCH, 2023, 59 (06)
  • [8] Physics-Aware Downsampling with Deep Learning for Scalable Flood Modeling
    Giladi, Niv
    Ben-Haim, Zvika
    Nevo, Sella
    Matias, Yossi
    Soudry, Daniel
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [9] Physics-aware learning and domain-specific loss design in ophthalmology
    Burwinkel, Hendrik
    Matz, Holger
    Saur, Stefan
    Hauger, Christoph
    Trost, Michael
    Hirnschall, Nino
    Findl, Oliver
    Navab, Nassir
    Ahmadi, Seyed-Ahmad
    [J]. MEDICAL IMAGE ANALYSIS, 2022, 76
  • [10] Physics-aware Spatiotemporal Modules with Auxiliary Tasks for Meta-Learning
    Seo, Sungyong
    Meng, Chuizheng
    Rambhatla, Sirisha
    Liu, Yan
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2943 - 2949