Multimodal Fake News Detection via CLIP-Guided Learning

被引:17
|
作者
Zhou, Yangming [1 ]
Yang, Yuzhou [1 ]
Ying, Qichao [1 ]
Qian, Zhenxing [1 ]
Zhang, Xinpeng [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, 2005 Songhu Rd, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Fake news detection; multimodal learning; CLIP; multimodal fusion;
D O I
10.1109/ICME55011.2023.00480
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fake news detection (FND) has attracted much research interests in social forensics. Many existing approaches introduce tailored attention mechanisms to fuse unimodal features. However, they ignore the impact of cross-modal similarity between modalities. Meanwhile, the potential of pretrained multimodal feature learning models in FND has not been well exploited. This paper proposes an FND-CLIP framework, i.e., a multimodal Fake News Detection network based on Contrastive Language-Image Pretraining (CLIP). FND-CLIP extracts the deep representations together from news using two unimodal encoders and two pair-wise CLIP encoders. The CLIP-generated multimodal features are weighted by CLIP similarity of the two modalities. We also introduce a modality-wise attention module to aggregate the features. Extensive experiments are conducted and the results indicate that the proposed framework has a better capability in mining crucial features for fake news detection. The proposed FND-CLIP can achieve better performances than previous works on three typical fake news datasets.
引用
收藏
页码:2825 / 2830
页数:6
相关论文
共 50 条
  • [41] A Multimodal Knowledge Representation Method for Fake News Detection
    Zeng, Fanhao
    Yao, Jiaxin
    Xu, Yijie
    Liu, Yanhua
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS, ICCCR 2024, 2024, : 360 - 364
  • [42] One-class learning for fake news detection through multimodal variational autoencoders
    Golo, Marcos Paulo Silva
    de Souza, Mariana Caravanti
    Rossi, Rafael Geraldeli
    Rezende, Solange Oliveira
    Nogueira, Bruno Magalhaes
    Marcacini, Ricardo Marcondes
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122
  • [43] AMPLE: Emotion-Aware Multimodal Fusion Prompt Learning for Fake News Detection
    Xu, Xiaoman
    Li, Xiangrun
    Wang, Taihang
    Jiang, Ye
    MULTIMEDIA MODELING, MMM 2025, PT I, 2025, 15520 : 86 - 100
  • [44] Supervised Learning for Fake News Detection
    Reis, Julio C. S.
    Correia, Andre
    Murai, Fabricio
    Veloso, Adriano
    Benevenuto, Fabricio
    IEEE INTELLIGENT SYSTEMS, 2019, 34 (02) : 76 - 81
  • [45] Multimodal fake news detection through data augmentation-based contrastive learning
    Hua, Jiaheng
    Cui, Xiaodong
    Li, Xianghua
    Tang, Keke
    Zhu, Peican
    APPLIED SOFT COMPUTING, 2023, 136
  • [46] Multimodal Fake News Detection with Textual, Visual and Semantic Information
    Giachanou, Anastasia
    Zhang, Guobiao
    Rosso, Paolo
    TEXT, SPEECH, AND DIALOGUE (TSD 2020), 2020, 12284 : 30 - 38
  • [47] Inter-modality Discordance for Multimodal Fake News Detection
    Singhal, Shivangi
    Dhawan, Mudit
    Shah, Rajiv Ratn
    Kumaraguru, Ponnurangam
    ACM International Conference Proceeding Series, 2021,
  • [48] Multimodal Fusion with BERT and Attention Mechanism for Fake News Detection
    Nguyen Manh Duc Tuan
    Pham Quang Nhat Minh
    2021 RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF 2021), 2021, : 43 - 48
  • [49] Fake News Detection Based on the Correlation Extension of Multimodal Information
    Li, Yanqiang
    Ji, Ke
    Ma, Kun
    Chen, Zhenxiang
    Zhou, Jin
    Wu, Jun
    WEB AND BIG DATA, PT I, APWEB-WAIM 2022, 2023, 13421 : 443 - 450
  • [50] Hierarchical Semantic Enhancement Network for Multimodal Fake News Detection
    Zhang, Qiang
    Liu, Jiawei
    Zhang, Fanrui
    Xie, Jingyi
    Zha, Zheng-Jun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3424 - 3433