Polyphenylene oxide/boron nitride-alumina hybrid composites with high thermal conductivity, low thermal expansion and ultralow dielectric loss

被引:3
|
作者
Xu, Jie [1 ,2 ]
Xu, Renjun [1 ,2 ]
Wang, Zeru [1 ,2 ]
Fang, Zeming [1 ,2 ]
Zhu, Xiaotao [1 ,2 ]
Meng, Yeqiao [3 ]
Liu, Qianfa [4 ]
Wang, Ke [1 ,2 ,5 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Key Lab Intelligent Mfg Continuous Carbo, Shenzhen, Peoples R China
[2] Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen, Peoples R China
[3] Shandong Dongyue Polymer Mat Co Ltd, Zibo, Peoples R China
[4] Shengyi Technol Co Ltd, Natl Engn Res Ctr Elect Circuits Base Mat, Dongguan, Peoples R China
[5] Southern Univ Sci & Technol, Shenzhen Key Lab Intelligent Mfg Continuous Carbo, Shenzhen, Peoples R China
关键词
CTE; dielectric loss; polymer-based composites; thermal conductivity; thermal management; BORON-NITRIDE; GRAPHENE NANOCOMPOSITES; POLYMER COMPOSITES; INTERFACE; FABRICATION; NANOSHEETS; FILLERS;
D O I
10.1002/pc.28125
中图分类号
TB33 [复合材料];
学科分类号
摘要
Traditional integrated circuit (IC) packaging materials and printed circuit board substrate materials suffer from several limitations including low thermal conductivity, high coefficient of thermal expansion (CTE), and poor dielectric properties. Although significant efforts have been made to enhance these properties, achieving a single composite system with simultaneous high thermal conductivity, extremely low CTE, and dielectric loss remains a formidable task. In this study, we propose a hybrid polymer composite system that addresses these challenges. Our approach involves utilizing a thermosetting polyphenylene oxide (PPO) as the resin matrix, while incorporating boron nitride (BN) sheets with high thermal conductivity and alumina (Al2O3) spheres with favorable fluidity as fillers. To optimize the composite properties, the filler surfaces are modified using dopamine and silane coupling agents, ensuring proper interface control. The composites exhibit significant improvements in thermal conductivity, reduced dielectric loss and CTE, while maintaining excellent processibility. Specifically, with a composition of 25 vol% BN and 25 vol% Al2O3, the thermal conductivity of the composite reaches 2.18 W center dot m-1 K-1, surpassing neat PPO resin by a factor of 10.9. Simultaneously, the CTE decreases from 2.27% to 1.18% between 50 and 260 degrees C, and the dielectric loss reduces from 0.0024 to 0.0011 at 10 GHz, as compared to neat PPO resin.HighlightsThe reported novel hybrid composite offers a promising solution to the limitations of traditional IC packaging materials.The reported hybrid composite exhibits significantly improved thermal conductivity, ultralow dielectric loss, and reduced coefficient of thermal expansion, while maintaining excellent processibility.The thermal conductivity of the composites reaches 2.18 W center dot m-1 K-1, surpassing that of the neat resin by a factor of 10.9, meanwhile the dielectric loss is as low as 0.0011 at 10 GHz, which is extremely difficult to achieve simultaneously for thermosetting polymer composites.Synergetic effects were realized with the hybridization of fillers with different dimensionality, and proper filler surface modification. Hybrid fillers to build an efficient thermal conductivity network.image
引用
下载
收藏
页码:5267 / 5280
页数:14
相关论文
共 50 条
  • [31] Hyperbranched Polyborosilazane and Boron Nitride Modified Cyanate Ester Composite with Low Dielectric Loss and Desirable Thermal Conductivity
    Gu, Junwei
    Xu, Shuang
    Zhuang, Qiang
    Tang, Yusheng
    Kong, Jie
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2017, 24 (02) : 784 - 790
  • [32] Thermal Conductivity and Electric Breakdown Strength properties of Epoxy/Alumina/Boron Nitride Nanosheets Composites
    Wang, Zhengdong
    Cheng, Yonghong
    Shao, Yingyu
    Xie, Qian
    Wu, Guanglei
    2016 IEEE INTERNATIONAL CONFERENCE ON DIELECTRICS (ICD), VOLS 1-2, 2016, : 355 - 358
  • [33] High thermal conductivity composites obtained by novel surface treatment of boron nitride
    Wie, Jaehyun
    Kim, Kwanwoo
    Kim, Jooheon
    CERAMICS INTERNATIONAL, 2020, 46 (11) : 17614 - 17620
  • [34] Synergistic Improvement in the Thermal Conductivity of Hybrid Boron Nitride Nanotube/Nanosheet Epoxy Composites
    Mohanraman, Rajeshkumar
    Steiner, Pietro
    Kocabas, Coskun
    Kinloch, Ian A.
    Bissett, Mark A.
    ACS APPLIED NANO MATERIALS, 2024, 7 (11) : 13142 - 13146
  • [35] Thermal Conductivity of Carbon/Boron Nitride Heteronanotube and Boron Nitride Nanotube Buckypapers: Implications for Thermal Management Composites
    Jones, Ruth Sang
    Gonzalez-Munoz, Sergio
    Griffiths, Ian
    Holdway, Philip
    Evers, Koen
    Luanwuthi, Santamon
    Maciejewska, Barbara M.
    Kolosov, Oleg
    Grobert, Nicole
    ACS APPLIED NANO MATERIALS, 2023, 6 (17) : 15374 - 15384
  • [36] Boron nitride@graphene oxide hybrids for epoxy composites with enhanced thermal conductivity
    Huang, Tao
    Zeng, Xiaoliang
    Yao, Yimin
    Sun, Rong
    Meng, Fanling
    Xu, Jianbin
    Wong, Chingping
    RSC ADVANCES, 2016, 6 (42): : 35847 - 35854
  • [37] High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers
    Hong, Jung-Pyo
    Yoon, Sung-Woon
    Hwang, Taeseon
    Oh, Joon-Suk
    Hong, Seung-Chul
    Lee, Youngkwan
    Nam, Jae-Do
    THERMOCHIMICA ACTA, 2012, 537 : 70 - 75
  • [38] Thermal Conductivity and Dielectric Properties of Epoxy Composites with Hyperbranched Polymer Modified Boron Nitride Nanoplatelets
    Huang, Xingyi
    Peng, Peng
    Peng, Wenyi
    Yu, Jinhong
    Liu, Fei
    Jiang, Pingkai
    PROCEEDINGS OF 2012 IEEE INTERNATIONAL CONFERENCE ON CONDITION MONITORING AND DIAGNOSIS (IEEE CMD 2012), 2012, : 1089 - 1092
  • [39] Thermal conductivity epoxy resin composites filled with boron nitride
    Gu, Junwei
    Zhang, Qiuyu
    Dang, Jing
    Xie, Chao
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2012, 23 (06) : 1025 - 1028
  • [40] Boron nitride microsphere/epoxy composites with enhanced thermal conductivity
    Sun, Jiajia
    Wang, De
    Yao, Yimin
    Zeng, Xiaoliang
    Pan, Guiran
    Huang, Yun
    Hu, Jiantao
    Sun, Rong
    Xu, Jian-Bin
    Wong, Ching-Ping
    HIGH VOLTAGE, 2017, 2 (03): : 147 - 153