United States curriculum standards advise mathematics teachers to teach students to attend to structure and understand how mathematical concepts are related. This requires teachers to have a structural perspective and a coherent, unified understanding of mathematical structures that span curricula. This study explores Prospective Secondary Mathematics Teachers' (PSMTs) unified understandings of identities and characterizes the structural features of identities that PSMTs attend to. I contribute a theoretical framework of three ways in which PSMTs reason about identities: a do-nothing element, a result of undoing something, and a coordination with inverse, binary operation, and set. I classify the level of coherence of their identity schemas demonstrated as they reasoned about the structural connections among additive, multiplicative, and compositional identities. I illustrate how having unified, coherent understandings of identities can lead PSMTs to reason productively about inverse and identity functions, while having incoherent understandings of identities can lead to inaccurate reasoning about inverse and identity functions. I conclude with teaching implications for fostering PSMTs' unified understandings of algebraic concepts.