A note on the Bayes factor for small interval hypotheses

被引:0
|
作者
Ligtvoet, Rudy [1 ]
机构
[1] Univ Cologne, Dept Educ & Social Sci, Gronewaldst 2a, D-50931 Cologne, Germany
关键词
Bayes factor; small interval hypothesis; INEQUALITY;
D O I
10.1080/03610926.2021.2002361
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the outcomes of multiple independent populations, a small interval hypothesis states that the maximum value of the parameters that determine the outcomes is no more than a small distance apart from the minimum value. An explicit expression is given for the probability of this hypothesis, from which related Bayes factors are obtained. Examples are given for how to obtain these Bayes factors for the 'about equal' hypothesis.
引用
收藏
页码:5060 / 5067
页数:8
相关论文
共 50 条
  • [21] A NOTE ON BAYES ESTIMATES
    BICKEL, PJ
    BLACKWEL.D
    ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (06): : 1907 - &
  • [22] A note on Bayes factors
    Walker, S
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2005, 47 (03) : 325 - 328
  • [23] Teacher's Corner: Evaluating Informative Hypotheses Using the Bayes Factor in Structural Equation Models
    Van Lissa, Caspar J.
    Gu, Xin
    Mulder, Joris
    Rosseel, Yves
    Van Zundert, Camiel
    Hoijtink, Herbert
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2021, 28 (02) : 292 - 301
  • [24] NOTE ON DISTINCT HYPOTHESES
    BERGER, A
    ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (03): : 432 - 432
  • [25] Bayes factors for peri-null hypotheses
    Ly, Alexander
    Wagenmakers, Eric-Jan
    TEST, 2022, 31 (04) : 1121 - 1142
  • [26] Objective Bayes Factors for Inequality Constrained Hypotheses
    Hoijtink, Herbert
    INTERNATIONAL STATISTICAL REVIEW, 2013, 81 (02) : 207 - 229
  • [28] Bayes factors for peri-null hypotheses
    Alexander Ly
    Eric-Jan Wagenmakers
    TEST, 2022, 31 : 1121 - 1142
  • [29] BAYES FACTORS FOR NONLINEAR HYPOTHESES AND LIKELIHOOD DISTRIBUTIONS
    MCCULLOCH, RE
    ROSSI, PE
    BIOMETRIKA, 1992, 79 (04) : 663 - 676
  • [30] Interval estimation naive Bayes
    Robles, V
    Larrañaga, P
    Peña, JM
    Menasalvas, E
    Pérez, MS
    ADVANCES IN INTELLIGENT DATA ANALYSIS V, 2003, 2810 : 143 - 154