An objective approach to select surrogate species for connectivity conservation

被引:4
|
作者
Dutta, Trishna [1 ,2 ]
De Barba, Marta [3 ,4 ,5 ]
Selva, Nuria [6 ,7 ]
Fedorca, Ancuta Cotovelea [8 ]
Maiorano, Luigi [9 ]
Thuiller, Wilfried [3 ]
Zedrosser, Andreas [10 ,11 ]
Signer, Johannes [1 ]
Pflueger, Femke [1 ,12 ]
Frank, Shane [10 ]
Lucas, Pablo M. [6 ,9 ,13 ]
Balkenhol, Niko [1 ]
机构
[1] Univ Goettingen, Fac Forest Sci & Forest Ecol, Wildlife Sci, Gottingen, Germany
[2] European Forest Inst, Resilience Programme, Pl Vereinten Nationen, Bonn, Germany
[3] Univ Savoie Mt Blanc, Univ Grenoble Alpes, CNRS, Lab Ecol Alpine LECA, Grenoble, France
[4] Univ Ljubljana, Biotech Fac, Dept Biol, Ljubljana, Slovenia
[5] DivjaLabs Ltd, Aljazeva Ulica, Ljubljana, Slovenia
[6] Polish Acad Sci, Adama Mickiewicza, Inst Nat Conservat, Krakow, Poland
[7] Univ Huelva, Fac Ciencias Expt, Ctr Estudios Avanzados Fis Matemat & Computac, Dept Ciencias Integradas, Huelva, Spain
[8] Natl Inst Res & Dev Forestry Marin Dracea, Wildlife Dept, Brasov, Romania
[9] Sapienza Univ Rome, Dept Biol & Biotechnol Charles Darwin, Rome, Italy
[10] Univ South Eastern Norway, Dept Nat Sci & Environm Hlth, Bo, Norway
[11] Univ Nat Resources & Life Sci, Inst Wildlife Biol & Game Management, Vienna, Austria
[12] Univ Goettingen, Dept Conservat Biol, Gottingen, Germany
[13] Univ Seville, Fac Biol, Dept Biol Vegetal & Ecol, Seville, Spain
来源
关键词
connectivity; umbrella species; Europe; objectivity; surrogate species; landscape; human influence; LANDSCAPE CONNECTIVITY; DISPERSAL DISTANCE; EXTINCTION RISK; MODELS;
D O I
10.3389/fevo.2023.1078649
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
IntroductionConnected landscapes can increase the effectiveness of protected areas by facilitating individual movement and gene flow between populations, thereby increasing the persistence of species even in fragmented habitats. Connectivity planning is often based on modeling connectivity for a limited number of species, i.e., "connectivity umbrellas", which serve as surrogates for co-occurring species. Connectivity umbrellas are usually selected a priori, based on a few life history traits and often without evaluating other species. MethodsWe developed a quantitative method to identify connectivity umbrellas at multiple scales. We demonstrate the approach on the terrestrial large mammal community (24 species) in continental Europe at two scales: 13 geographic biomes and 36 ecoregions, and evaluate the interaction of landscape characteristics on the selection of connectivity umbrellas. ResultsWe show that the number, identity, and attributes of connectivity umbrellas are sensitive to spatial scale and human influence on the landscape. Multiple species were selected as connectivity umbrellas in 92% of the geographic biomes (average of 4.15 species) and 83% of the ecoregions (average of 3.16 species). None of the 24 species evaluated is by itself an effective connectivity umbrella across its entire range. We identified significant interactions between species and landscape attributes. Species selected as connectivity umbrellas in regions with low human influence have higher mean body mass, larger home ranges, longer dispersal distances, smaller geographic ranges, occur at lower population densities, and are of higher conservation concern than connectivity umbrellas in more human-influenced regions. More species are required to meet connectivity targets in regions with high human influence (average of three species) in comparison to regions with low human influence (average of 1.67 species). DiscussionWe conclude that multiple species selected in relation to landscape scale and characteristics are essential to meet connectivity goals. Our approach enhances objectivity in selecting which and how many species are required for connectivity conservation and fosters well-informed decisions, that in turn benefit entire communities and ecosystems.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Grassland intactness outcompetes species as a more efficient surrogate in conservation design
    Tack, Jason D.
    Jakes, Andrew F.
    Jones, Paul F.
    Hebblewhite, Mark
    Naugle, David E.
    Doherty, Kevin E.
    Sather, Marisa K.
    Martin, Brian H.
    Pritchert, Ronald
    CONSERVATION SCIENCE AND PRACTICE, 2023, 5 (12)
  • [22] Use of surrogate species to cost-effectively prioritize conservation actions
    Ward, Michelle
    Rhodes, Jonathan R.
    Watson, James E. M.
    Lefevre, James
    Atkinson, Scott
    Possingham, Hugh P.
    CONSERVATION BIOLOGY, 2020, 34 (03) : 600 - 610
  • [23] Pooling biodiversity offsets to improve habitat connectivity and species conservation
    Tarabon, Simon
    Dutoit, Thierry
    Isselin-Nondedeu, Francis
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 277
  • [24] Pooling biodiversity offsets to improve habitat connectivity and species conservation
    Tarabon, Simon
    Dutoit, Thierry
    Isselin-Nondedeu, Francis
    Journal of Environmental Management, 2021, 277
  • [25] A multi-scale, multi-species approach for assessing effectiveness of habitat and connectivity conservation for endangered felids
    Ashrafzadeh, Mohammad Reza
    Khosravi, Rasoul
    Adibi, Mohammad Ali
    Taktehrani, Atie
    Wan, Ho Yi
    Cushman, Samuel A.
    BIOLOGICAL CONSERVATION, 2020, 245
  • [26] CONSERVATION OF SPECIES - THE NEED FOR A NEW APPROACH
    DEKLEMM, C
    ENVIRONMENTAL POLICY AND LAW, 1982, 9 (04) : 117 - 128
  • [27] A species approach to marine ecosystem conservation
    Campagna, Claudio
    Sanderson, Eric W.
    Coppolillo, Peter B.
    Falabella, Valeria
    Piola, Alberto R.
    Strindberg, Samantha
    Croxall, John P.
    AQUATIC CONSERVATION-MARINE AND FRESHWATER ECOSYSTEMS, 2007, 17 : S122 - S147
  • [28] A derivative approach to endangered species conservation
    Mandel, James T.
    Donlan, C. Josh
    Armstrong, Jonathan
    FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2010, 8 (01) : 44 - 49
  • [29] Testing the effectiveness of surrogate species for conservation planning in the Greater Virunga Landscape, Africa
    Jones, Kendall R.
    Plumptre, Andrew J.
    Watson, James E. M.
    Possingham, Hugh P.
    Ayebare, Sam
    Rwetsiba, A.
    Wanyama, F.
    Kujirakwinja, D.
    Klein, Carissa J.
    LANDSCAPE AND URBAN PLANNING, 2016, 145 : 1 - 11
  • [30] Prioritising conservation areas using species surrogate measures: consistent with ecological theory?
    Saetersdal, Magne
    Gjerde, Ivar
    JOURNAL OF APPLIED ECOLOGY, 2011, 48 (05) : 1236 - 1240