Forecasting bitcoin volatility: exploring the potential of deep learning

被引:4
|
作者
Pratas, Tiago E. [1 ]
Ramos, Filipe R. [2 ]
Rubio, Lihki [3 ]
机构
[1] ISCTE Univ Inst Lisbon, Dept Econ, P-1649026 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, CEAUL Ctr Estat & Aplicacoes, Campo Grande 016, P-1749016 Lisbon, Portugal
[3] Univ Norte, Dept Math & Stat, Barranquilla 081007, Colombia
关键词
Cryptocurrencies; Bitcoin; ARCH; GARCH models; Deep learning; Forecasting; Prediction error; SUPPORT VECTOR MACHINE; NEURAL-NETWORKS; DIRECTION; JUMPS;
D O I
10.1007/s40822-023-00232-0
中图分类号
F [经济];
学科分类号
02 ;
摘要
This study aims to evaluate forecasting properties of classic methodologies (ARCH and GARCH models) in comparison with deep learning methodologies (MLP, RNN, and LSTM architectures) for predicting Bitcoin's volatility. As a new asset class with unique characteristics, Bitcoin's high volatility and structural breaks make forecasting challenging. Based on 2753 observations from 08-09-2014 to 01-05-2022, this study focuses on Bitcoin logarithmic returns. Results show that deep learning methodologies have advantages in terms of forecast quality, although significant computational costs are required. Although both MLP and RNN models produce smoother forecasts with less fluctuation, they fail to capture large spikes. The LSTM architecture, on the other hand, reacts strongly to such movements and tries to adjust its forecast accordingly. To compare forecasting accuracy at different horizons MAPE, MAE metrics are used. Diebold-Mariano tests were conducted to compare the forecast, confirming the superiority of deep learning methodologies. Overall, this study suggests that deep learning methodologies could provide a promising tool for forecasting Bitcoin returns (and therefore volatility), especially for short-term horizons.
引用
收藏
页码:285 / 305
页数:21
相关论文
共 50 条
  • [1] Forecasting bitcoin volatility: exploring the potential of deep learning
    Tiago E. Pratas
    Filipe R. Ramos
    Lihki Rubio
    Eurasian Economic Review, 2023, 13 : 285 - 305
  • [2] Forecasting volatility of Bitcoin
    Bergsli, Lykke Overland
    Lind, Andrea Falk
    Molnar, Peter
    Polasik, Michal
    RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE, 2022, 59
  • [3] On Forecasting Realized Volatility for Bitcoin Based on Deep Learning PSO-GRU Model
    Tang, Xiaolong
    Song, Yuping
    Jiao, Xingrui
    Sun, Yankun
    COMPUTATIONAL ECONOMICS, 2024, 63 (05) : 2011 - 2033
  • [4] Forecasting Bitcoin volatility using machine learning techniques
    Huang, Zih-Chun
    Sangiorgi, Ivan
    Urquhart, Andrew
    JOURNAL OF INTERNATIONAL FINANCIAL MARKETS INSTITUTIONS & MONEY, 2024, 97
  • [5] Volatility forecasting accuracy for Bitcoin
    Koechling, Gerrit
    Schmidtke, Philipp
    Posch, Peter N.
    ECONOMICS LETTERS, 2020, 191
  • [6] Forecasting volatility in bitcoin market
    Mawuli Segnon
    Stelios Bekiros
    Annals of Finance, 2020, 16 : 435 - 462
  • [7] Forecasting volatility in bitcoin market
    Segnon, Mawuli
    Bekiros, Stelios
    ANNALS OF FINANCE, 2020, 16 (03) : 435 - 462
  • [8] Forecasting the price of Bitcoin using deep learning
    Liu, Mingxi
    Li, Guowen
    Li, Jianping
    Zhu, Xiaoqian
    Yao, Yinhong
    FINANCE RESEARCH LETTERS, 2021, 40
  • [9] Forecasting Bitcoin Volatility Using Hybrid GARCH Models with Machine Learning
    Zahid, Mamoona
    Iqbal, Farhat
    Koutmos, Dimitrios
    RISKS, 2022, 10 (12)
  • [10] A Mechanism for Bitcoin Price Forecasting using Deep Learning
    Ateeq, Karamath
    Al Zarooni, Ahmed Abdelrahim
    Rehman, Abdur
    Khan, Muhammd Adna
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 441 - 448