Traveling Wave Solutions for Non-Newtonian Foam Flow in Porous Media

被引:4
|
作者
da Silva Pereira, Weslley [1 ]
Chapiro, Grigori [2 ]
机构
[1] Univ Colorado Denver, Dept Math & Stat Sci, Larimer St 1201, Denver, CO 80204 USA
[2] Univ Fed Juiz de Fora, Dept Math, Rua J L Kelmer S-N, BR-36036900 Juiz De Fora, MG, Brazil
关键词
Traveling waves; Non-Newtonian fluids; Foam flow; Porous media; STEADY-STATE; MODEL PARAMETERS; SIMULATION; GENERATION; TRANSIENT; FRACTION; BEHAVIOR; GAS;
D O I
10.1007/s11242-023-01937-1
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The injection and in situ generation of foam in porous media successfully control gas mobility and improve the fluids' sweep efficiency inside porous media. Mathematical models describing this problem use two phases, foamed gas, and fluid, and usually have a term for foam generation and destruction. Moreover, the non-Newtonian foam behavior is frequently modeled using Hirasaki and Lawson's formula for foamed gas viscosity. In this paper, we detail how the traveling wave analysis can be used to estimate the propagation profiles and velocity for a range of non-Newtonian foam models in porous media at constant total superficial flow velocity. We reformulate Hirasaki and Lawson's formula in an explicit form allowing us to find traveling wave solutions for a foam model with non-Newtonian gas viscosity and a foam generation linearly dependent on the foam texture. Comparing the solution with the one for the Newtonian version allows us to analyze qualitatively and quantitatively the rheology of the foam flow in porous media.
引用
收藏
页码:247 / 265
页数:19
相关论文
共 50 条
  • [41] Flow of Non-Newtonian Polymeric Solutions Through Fibrous Media
    Dhotkar, B.N.
    Chhabra, R.P.
    Eswaran, V.
    1600, John Wiley and Sons Inc. (76):
  • [42] Flow of non-Newtonian polymeric solutions through fibrous media
    Dhotkar, BN
    Chhabra, RP
    Eswaran, V
    JOURNAL OF APPLIED POLYMER SCIENCE, 2000, 76 (07) : 1171 - 1185
  • [43] Elastic wave equation for porous media saturated with non-Newtonian fluid
    Sun W.
    Xiong F.
    Cao H.
    Yang Z.
    Lu M.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (03): : 519 - 527
  • [44] Two-dimensional flow of Newtonian and non-Newtonian fluids through porous media
    Gestoso, P
    Müller, AJ
    Sáez, AE
    XIITH INTERNATIONAL CONGRESS ON RHEOLOGY, PROCEEDINGS, 1996, : 377 - 378
  • [45] Localization in Flow of Non-Newtonian Fluids Through Disordered Porous Media
    Seybold, H. J.
    Eberhard, U.
    Secchi, E.
    Cisne, R. L. C., Jr.
    Jimenez-Martinez, J.
    Andrade, R. F. S.
    Araujo, A. D.
    Holzner, M.
    Andrade, J. S., Jr.
    FRONTIERS IN PHYSICS, 2021, 9
  • [46] Numerical modeling of non-Newtonian fluid flow in fractures and porous media
    Bao, Kai
    Lavrov, Alexandre
    Nilsen, Halvor Moll
    COMPUTATIONAL GEOSCIENCES, 2017, 21 (5-6) : 1313 - 1324
  • [47] Numerical modeling of non-Newtonian fluid flow in fractures and porous media
    Kai Bao
    Alexandre Lavrov
    Halvor Møll Nilsen
    Computational Geosciences, 2017, 21 : 1313 - 1324
  • [48] Nanoparticle transport within non-Newtonian fluid flow in porous media
    Shende, Takshak
    Mangal, Deepak
    Conrad, Jacinta C.
    Niasar, Vahid
    Babaei, Masoud
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [49] Displacement of non-Newtonian compressible fluids in plane porous media flow
    Ugarelli, R.
    Bottarelli, M.
    Di Federico, V.
    ADVANCES IN FLUID MECHANICS VII, 2008, 59 : 235 - 245
  • [50] Models for flow of non-Newtonian and complex fluids through porous media
    Pearson, JRA
    Tardy, PMJ
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2002, 102 (02) : 447 - 473