Improved swin transformer-based defect detection method for transmission line patrol inspection images

被引:1
|
作者
Dong, Kai [1 ]
Shen, Qingbin [1 ]
Wang, Chengyi [1 ]
Dong, Yanwu [1 ]
Liu, Qiuyue [1 ]
Lu, Ziqiang [1 ]
Lu, Ziying [1 ]
机构
[1] ROC State Grid UHV Transmiss Co SEPC, Taiyuan 030000, Shanxi, Peoples R China
关键词
Convolutional neural network; Transformer; Defect detection; Feature fusion; OBJECT DETECTION;
D O I
10.1007/s12065-023-00837-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Correctly locating transmission line defects and taking timely remedial measures are essential to ensure power systems' safety. Convolutional neural networks (CNNs) are commonly used in defect detection in transmission line inspection images, but the local nature of the convolution operation limits the detector's performance. Transformers have become more and more prominent in the field of computer vision because of their global computing function. This paper proposes a transmission line image defect detection method that combines CNN and Transformer comprehensively. In particular, an enhanced local perception unit is designed to reduce false and missed detections of small and occluded objects. The problem of the high computation and complexity of the Multi-Head Self-Attention module is solved via a lightweight self-attention method. In addition, an adaptive multi-scale fusion module is designed to extract more effective fusion features and improve the model's robustness. The numerical realization of the proposed method versus Faster Region-based Convolutional Neural Network (Faster R-CNN), Cascade R-CNN, DEtection TRansformer (DETR)-R50, You Only Look One-level Feature (YOLOF), You Only Look One X-Large (YOLOX-L) and Swin Transformer (Swin-T) proved its superiority in the average accuracy of transmission line image defect detection.
引用
收藏
页码:549 / 558
页数:10
相关论文
共 50 条
  • [41] Swin Transformer-Based Object Detection Model Using Explainable Meta-Learning Mining
    Baek, Ji-Won
    Chung, Kyungyong
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [42] Swin Transformer-Based Edge Guidance Network for RGB-D Salient Object Detection
    Wang, Shuaihui
    Jiang, Fengyi
    Xu, Boqian
    SENSORS, 2023, 23 (21)
  • [43] STEF: a Swin Transformer-Based Enhanced Feature Pyramid Fusion Model for Dongba character detection
    Ma, Yuqi
    Chen, Shanxiong
    Li, Yongbo
    He, Jingliu
    Ruan, Qiuyue
    Xiao, Wenjun
    Xiong, Hailing
    Li, Xiaoliang
    HERITAGE SCIENCE, 2024, 12 (01):
  • [44] Underwater Target Detection Algorithm Based on YOLO and Swin Transformer for Sonar Images
    Chen, Ruoyu
    Zhan, Shuyue
    Chen, Ying
    2022 OCEANS HAMPTON ROADS, 2022,
  • [45] A Novel Transformer-Based Adaptive Object Detection Method
    Su, Shuzhi
    Chen, Runbin
    Fang, Xianjin
    Zhang, Tian
    ELECTRONICS, 2023, 12 (03)
  • [46] Dual Domain Swin Transformer-based Reconstruction method for Sparse-View Computed Tomography
    Van der Rauwelaert, J.
    Bossuyt, C.
    Sijbers, J.
    e-Journal of Nondestructive Testing, 2025, 30 (02):
  • [47] A Transformer-Based Network With Feature Complementary Fusion for Crack Defect Detection
    Ma, Mingyang
    Yang, Lei
    Liu, Yanhong
    Yu, Hongnian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, : 16989 - 17006
  • [48] Transformer-based Encoder-Decoder Model for Surface Defect Detection
    Lu, Xiaofeng
    Fan, Wentao
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 125 - 130
  • [49] A transformer-based method for the registration of terahertz security images with visible light images
    Shen, Liujia
    Zhou, Deliang
    Bai, Yechao
    PROCEEDINGS OF THE 2024 6TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING SYSTEMS, SSPS 2024, 2024, : 48 - 55
  • [50] Automatic Detection of Transformer Components in Inspection Images Based on Improved Faster R-CNN
    Liu, Ziquan
    Wang, Huifang
    ENERGIES, 2018, 11 (12)