Discrete-modulation continuous-variable quantum key distribution with a high key rate

被引:15
|
作者
Wang, Pu [1 ,2 ,3 ]
Zhang, Yu [1 ,2 ]
Lu, Zhenguo [1 ,2 ]
Wang, Xuyang [1 ,2 ]
Li, Yongmin [1 ,2 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
[3] Shanxi Univ Finance & Econ, Sch Informat, Taiyuan 030006, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 02期
基金
中国国家自然科学基金;
关键词
quantum key distribution; continuous-variable; quantum cryptography; discrete-modulation; numerical method; high rate; SECURITY;
D O I
10.1088/1367-2630/acb964
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Discrete-modulation continuous-variable (CV) quantum key distribution has the potential for large-scale deployment in secure quantum communication networks owing to its low implementation complexity and compatibility with the current coherent optical telecommunication. However, current discrete-modulation protocols require relatively large constellation sizes to achieve a key rate comparable to that of the Gaussian modulation. Here, we show that a high key rate comparable to the Gaussian modulation can be achieved using only ten or so coherent states by implementing suitable key map and numerical convex optimization techniques. Specifically, the key rate of the two-ring constellation with 12 coherent states (four states in the inner ring and eight states in the outer ring) can reach 2.4 times of that of original quadrature phase shift keying and 70% of the Gaussian modulation protocol at 50 km. Such an approach can easily be applied to existing systems, making the discrete-modulation protocol an attractive alternative for high-rate and low-cost applications in secure quantum communication networks.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Modulation leakage vulnerability in continuous-variable quantum key distribution
    Jain, Nitin
    Derkach, Ivan
    Chin, Hou-Man
    Filip, Radim
    Andersen, Ulrik L.
    Usenko, Vladyslav C.
    Gehring, Tobias
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
  • [22] High key rate continuous-variable quantum key distribution using telecom optical components
    Wang, Tao
    Huang, Peng
    Li, Lang
    Zhou, Yingming
    Zeng, Guihua
    NEW JOURNAL OF PHYSICS, 2024, 26 (02):
  • [23] Continuous-variable quantum key distribution with 1 Mbps secure key rate
    Huang, Duan
    Lin, Dakai
    Wang, Chao
    Liu, Weiqi
    Fang, Shuanghong
    Peng, Jinye
    Huang, Peng
    Zeng, Guihua
    OPTICS EXPRESS, 2015, 23 (13): : 17511 - 17519
  • [24] Secret key rate proof of multicarrier continuous-variable quantum key distribution
    Gyongyosi, Laszlo
    Imre, Sandor
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2019, 32 (04)
  • [25] Secret Key Rate Adaption for Multicarrier Continuous-Variable Quantum Key Distribution
    Gyongyosi L.
    Imre S.
    SN Computer Science, 2020, 1 (1)
  • [26] Automated machine learning for secure key rate in discrete-modulated continuous-variable quantum key distribution
    Liu, Zhi-Ping
    Zhou, Min-Gang
    Liu, Wen-Bo
    Li, Chen-Long
    Gu, Jie
    Yin, Hua-Lei
    Chen, Zeng-Bing
    OPTICS EXPRESS, 2022, 30 (09) : 15024 - 15036
  • [27] Neural network method: withstanding noise for continuous-variable quantum key distribution with discrete modulation
    Cheng, Dingmin
    Guo, Yewei
    Dai, Jiayang
    Wu, Hao
    Guo, Ying
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2024, 41 (04) : 879 - 886
  • [28] Security of discrete-modulated continuous-variable quantum key distribution
    Bauml, Stefan
    Pascual-Garcia, Carlos
    Wright, Victoria
    Fawzi, Omar
    Acin, Antonio
    QUANTUM, 2024, 8
  • [29] Trusted Detector Noise Analysis for Discrete Modulation Schemes of Continuous-Variable Quantum Key Distribution
    Lin, Jie
    Lutkenhaus, Norbert
    PHYSICAL REVIEW APPLIED, 2020, 14 (06)
  • [30] Secret key rate of continuous-variable quantum key distribution with finite codeword length
    Yan FENG
    Runhe QIU
    Kun ZHANG
    Xue-Qin JIANG
    Meixiang ZHANG
    Peng HUANG
    Guihua ZENG
    ScienceChina(InformationSciences), 2023, 66 (08) : 150 - 151