Local isoperimetric inequalities in metric measure spaces verifying measure contraction property

被引:0
|
作者
Huang, Xian-Tao [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
关键词
RICCI CURVATURE; SHARP; GEOMETRY;
D O I
10.1007/s00229-022-01373-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that on an essentially non-branching MCP(K, N) space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [21] Equivalent Condition of the Measure Shadowing Property on Metric Spaces
    Miao, Jie
    Yang, Yinong
    MATHEMATICS, 2024, 12 (06)
  • [22] Countable contraction mappings in metric spaces: invariant sets and measure
    Fernanda Barrozo, Maria
    Molter, Ursula
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (04): : 593 - 602
  • [23] CONTRACTION AND REGULARIZING PROPERTIES OF HEAT FLOWS IN METRIC MEASURE SPACES
    Luise, Giulia
    Savare, Giuseppe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (01): : 273 - 297
  • [24] Sharpp-Poincare inequalities under measure contraction property
    Han, Bang-Xian
    MANUSCRIPTA MATHEMATICA, 2020, 162 (3-4) : 457 - 471
  • [25] Nagy type inequalities in metric measure spaces and some applications
    Babenko, V. F.
    Babenko, V. V.
    Kovalenko, O., V
    Parfinovych, N., V
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2023, 15 (02) : 563 - 575
  • [26] Brunn-Minkowski inequalities in product metric measure spaces
    Ritore, Manuel
    Yepes Nicolas, Jesus
    ADVANCES IN MATHEMATICS, 2018, 325 : 824 - 863
  • [27] Isoperimetric inequalities of Euclidean type in metric spaces
    S. Wenger
    Geometric & Functional Analysis GAFA, 2005, 15 : 534 - 554
  • [28] Isoperimetric inequalities of Euclidean type in metric spaces
    Wenger, S
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (02) : 534 - 554
  • [29] Universal inequalities on complete noncompact smooth metric measure spaces
    Yanli Li
    Feng Du
    Archiv der Mathematik, 2017, 109 : 591 - 598
  • [30] Differentiability and Poincare-type inequalities in metric measure spaces
    Bate, David
    Li, Sean
    ADVANCES IN MATHEMATICS, 2018, 333 : 868 - 930