Landau damping on the torus for the Vlasov-Poisson system with massless electrons

被引:3
|
作者
Gagnebin, Antoine [1 ]
Iacobelli, Mikaela [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
关键词
GLOBAL CLASSICAL-SOLUTIONS; QUASI-NEUTRAL LIMIT; WEAK SOLUTIONS; PROPAGATION; REGULARITY; EXISTENCE; EQUATION; MOMENTS;
D O I
10.1016/j.jde.2023.08.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the nonlinear Landau damping on the torus Td for the Vlasov-Poisson system with massless electrons (VPME). We consider solutions with analytic or Gevrey (gamma > 1/3) initial data, close to a homogeneous equilibrium satisfying a Penrose stability condition. We show that for such solutions, the corresponding density and force field decay exponentially fast as time goes to infinity. This work extends the results for Vlasov-Poisson on the torus to the case of ions and, more generally, to arbitrary analytic nonlinear couplings.(c) 2023 The Authors. Published by Elsevier Inc.
引用
收藏
页码:154 / 203
页数:50
相关论文
共 50 条
  • [31] Functional solutions for the Vlasov-Poisson system
    Carrillo, JA
    Soler, J
    APPLIED MATHEMATICS LETTERS, 1997, 10 (01) : 45 - 50
  • [32] An inverse problem for the Vlasov-Poisson system
    Golgeleyen, Fikret
    Yamamoto, Masahiro
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2015, 23 (04): : 363 - 372
  • [33] The gyrokinetic approximation for the Vlasov-Poisson system
    Saint-Raymond, L
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (09): : 1305 - 1332
  • [34] FOCUSING SOLUTIONS OF THE VLASOV-POISSON SYSTEM
    Zhang, Katherine Zhiyuan
    KINETIC AND RELATED MODELS, 2019, 12 (06) : 1313 - 1327
  • [35] Traveling waves of the Vlasov-Poisson system
    Suzuki, Masahiro
    Takayama, Masahiro
    Zhang, Katherine Zhiyuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 428 : 230 - 290
  • [36] Gravitational Collapse and the Vlasov-Poisson System
    Rein, Gerhard
    Taegert, Lukas
    ANNALES HENRI POINCARE, 2016, 17 (06): : 1415 - 1427
  • [37] Global existence of small amplitude solutions to the Vlasov-Poisson system with radiation damping
    Chen, Jing
    Zhang, Xianwen
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (12)
  • [38] A perturbation method for the Vlasov-Poisson system
    Lundberg, J
    Fla, T
    JOURNAL OF PLASMA PHYSICS, 1998, 60 : 181 - 192
  • [39] Modified scattering for the Vlasov-Poisson system
    Choi, Sun-Ho
    Kwon, Soonsik
    NONLINEARITY, 2016, 29 (09) : 2755 - 2774
  • [40] Gevrey regularity for the Vlasov-Poisson system
    Ruiz, Renato Velozo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (04): : 1145 - 1165