Kidney Segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging Integrating Deep Convolutional Neural Networks and Level Set Methods

被引:1
|
作者
El-Melegy, Moumen T. [1 ]
Kamel, Rasha M. [2 ]
Abou El-Ghar, Mohamed [3 ]
Alghamdi, Norah Saleh [4 ]
El-Baz, Ayman [5 ]
机构
[1] Assiut Univ, Elect Engn Dept, Assiut 71515, Egypt
[2] Assiut Univ, Comp Sci Dept, Assiut 71515, Egypt
[3] Mansoura Univ, Urol & Nephrol Ctr, Radiol Dept, Mansoura 35516, Egypt
[4] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, POB 84428, Riyadh 11671, Saudi Arabia
[5] Univ Louisville, Bioengn Dept, Louisville, KY 40292 USA
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 07期
关键词
DCE-MRI; kidney segmentation; U-Net; level set;
D O I
10.3390/bioengineering10070755
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) technique has taken on a significant and increasing role in diagnostic procedures and treatments for patients who suffer from chronic kidney disease. Careful segmentation of kidneys from DCE-MRI scans is an essential early step towards the evaluation of kidney function. Recently, deep convolutional neural networks have increased in popularity in medical image segmentation. To this end, in this paper, we propose a new and fully automated two-phase approach that integrates convolutional neural networks and level set methods to delimit kidneys in DCE-MRI scans. We first develop two convolutional neural networks that rely on the U-Net structure (UNT) to predict a kidney probability map for DCE-MRI scans. Then, to leverage the segmentation performance, the pixel-wise kidney probability map predicted from the deep model is exploited with the shape prior information in a level set method to guide the contour evolution towards the target kidney. Real DCE-MRI datasets of 45 subjects are used for training, validating, and testing the proposed approach. The valuation results demonstrate the high performance of the two-phase approach, achieving a Dice similarity coefficient of 0.95 & PLUSMN; 0.02 and intersection over union of 0.91 & PLUSMN; 0.03, and 1.54 & PLUSMN; 1.6 considering a 95% Hausdorff distance. Our intensive experiments confirm the potential and effectiveness of that approach over both UNT models and numerous recent level set-based methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Detecting a Geometric Miss by Dynamic Contrast-enhanced Magnetic Resonance Imaging
    Lin, Y.
    Lin, Y.
    Wang, C.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 84 (03): : S688 - S688
  • [42] Dynamic contrast-enhanced magnetic resonance imaging of the wrist in early arthritis
    Zampogna, G.
    Parodi, M.
    Bartolini, B.
    Schettini, D.
    Minetti, G.
    D'Auria, M.
    Silvestri, E.
    Garlaschi, G.
    Cimmino, M. A.
    REUMATISMO, 2008, 60 (04) : 254 - 259
  • [43] DYNAMIC CONTRAST-ENHANCED MAGNETIC RESONANCE IMAGING IN DIAGNOSIS OF TESTICULAR TORSION
    Shimizu, Ryutaro
    Moriyasu, Emika
    Sakamoto, Norio
    Hoshino, Takahiro
    Yamamoto, Atsushi
    Nishikawa, Ryoma
    Teraoka, Shogo
    Kimura, Yusuke
    Iwamoto, Hideto
    Tsounapi, Panagiota
    Morizane, Shuichi
    Hikita, Katsuya
    Honda, Masashi
    Takenaka, Atsushi
    JOURNAL OF UROLOGY, 2020, 203 : E526 - E527
  • [45] DYNAMIC CONTRAST-ENHANCED MAGNETIC RESONANCE IMAGING OF CANINE BRAIN TUMORS
    Zhao, Qun
    Lee, Sunbok
    Kent, Marc
    Schatzberg, Scott
    Platt, Simon
    VETERINARY RADIOLOGY & ULTRASOUND, 2010, 51 (02) : 122 - 129
  • [46] Dynamic contrast-enhanced magnetic resonance imaging of osteoporotic vertebral fracture
    Kanchiku, T
    Taguchi, T
    Toyoda, K
    Fujii, K
    Kawai, S
    SPINE, 2003, 28 (22) : 2522 - 2526
  • [47] Dynamic contrast-enhanced magnetic resonance imaging for head and neck cancers
    Elhalawani, Hesham
    Ger, Rachel B.
    Mohamed, Abdallah S. R.
    Awan, Musaddiq J.
    Ding, Yao
    Li, Kimberly
    Fave, Xenia J.
    Beers, Andrew L.
    Driscoll, Brandon
    Hormuth, David A., II
    van Houdt, Petra J.
    He, Renjie
    Zhou, Shouhao
    Mathieu, Kelsey B.
    Li, Heng
    Coolens, Catherine
    Chung, Caroline
    Bankson, James A.
    Huang, Wei
    Wang, Jihong
    Sandulache, Vlad C.
    Lai, Stephen Y.
    Howell, Rebecca M.
    Stafford, R. Jason
    Yankeelov, Thomas E.
    van der Heide, Uulke A.
    Frank, Steven J.
    Barboriak, Daniel P.
    Hazle, John D.
    Court, Laurence E.
    Kalpathy-Cramer, Jayashree
    Fuller, Clifton D.
    SCIENTIFIC DATA, 2018, 5
  • [48] Evolution from empirical dynamic contrast-enhanced magnetic resonance imaging to pharmacokinetic MRI
    Taylor, JS
    Reddick, WE
    ADVANCED DRUG DELIVERY REVIEWS, 2000, 41 (01) : 91 - 110
  • [49] Correlation between estimates of tumor perfusion from microbubble contrast-enhanced sonography and dynamic contrast-enhanced magnetic resonance imaging
    Yankeelov, TE
    Niermann, KJ
    Huamani, J
    Kim, DW
    Quarles, CC
    Fleischer, AC
    Hallahan, DE
    Price, RR
    Gore, JC
    JOURNAL OF ULTRASOUND IN MEDICINE, 2006, 25 (04) : 487 - 497
  • [50] Integrating dynamic contrast-enhanced magnetic resonance imaging and diffusion kurtosis imaging for neoadjuvant chemotherapy assessment of nasopharyngeal carcinoma
    Zheng, Dechun
    Lai, Guojing
    Chen, Ying
    Yue, Qiuyuan
    Liu, Xiangyi
    Chen, Xiaodan
    Chen, Weibo
    Chan, Queenie
    Chen, Yunbin
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (05) : 1208 - 1216