PID with Deep Reinforcement Learning and Heuristic Rules for Autonomous UAV Landing

被引:0
|
作者
Yuan, Man [1 ]
Wang, Chang [1 ]
Zhang, Pengpeng [2 ]
Wei, Changyun [2 ]
机构
[1] Natl Univ Def Technol, Changsha 410073, Hunan, Peoples R China
[2] Hohai Univ, Changzhou 213022, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
UAV landing; Deep reinforcement learning; DDPG; PID; STRATEGY;
D O I
10.1007/978-981-99-0479-2_174
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned Aerial Vehicle (UAV) landing is a challenging task in dynamic environments. The PID controller can be used, but it suffers from the problem of manual parameter tuning. In this paper, we propose that PID can be combined with deep reinforcement learning to learn the PID parameters autonomous learning. Besides, heuristic rules of how to adjust the PID parameters can be used to further speed up the learning. We demonstrate the effectiveness of the proposed method in a simulated quadrotor UAV landing task.
引用
收藏
页码:1876 / 1884
页数:9
相关论文
共 50 条
  • [21] Autonomous Obstacle Avoidance and Target Tracking of UAV Based on Deep Reinforcement Learning
    Xu, Guoqiang
    Jiang, Weilai
    Wang, Zhaolei
    Wang, Yaonan
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 104 (04)
  • [22] Deep-Reinforcement-Learning-Based Autonomous UAV Navigation With Sparse Rewards
    Wang, Chao
    Wang, Jian
    Wang, Jingjing
    Zhang, Xudong
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07): : 6180 - 6190
  • [23] Image-Based Deep Reinforcement Meta-Learning for Autonomous Lunar Landing
    Scorsoglio, Andrea
    D'Ambrosio, Andrea
    Ghilardi, Luca
    Gaudet, Brian
    Curti, Fabio
    Furfaro, Roberto
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 2022, 59 (01) : 153 - 165
  • [24] Autonomous Landing on a Moving Platform Using Vision-Based Deep Reinforcement Learning
    Ladosz, Pawel
    Mammadov, Meraj
    Shin, Heejung
    Shin, Woojae
    Oh, Hyondong
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) : 4575 - 4582
  • [25] Hybrid reinforcement learning for autonomous UAV control
    Yoo J.H.
    [J]. Journal of Institute of Control, Robotics and Systems, 2019, 25 (06) : 546 - 550
  • [26] Reinforcement learning approach to autonomous PID tuning
    Dogru, Oguzhan
    Velswamy, Kirubakaran
    Ibrahim, Fadi
    Wu, Yuqi
    Sundaramoorthy, Arun Senthil
    Huang, Biao
    Xu, Shu
    Nixon, Mark
    Bell, Noel
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2022, 161
  • [27] Reinforcement Learning Approach to Autonomous PID Tuning
    Dogru, Oguzhan
    Velswamy, Kirubakaran
    Ibrahim, Fadi
    Wu, Yuqi
    Sundaramoorthy, Arun Senthil
    Huang, Biao
    Xu, Shu
    Nixon, Mark
    Bell, Noel
    [J]. 2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 2691 - 2696
  • [28] A fast, lightweight deep learning vision pipeline for autonomous UAV landing support with added robustness
    Pieczynski, Dominik
    Ptak, Bartosz
    Kraft, Marek
    Piechocki, Mateusz
    Aszkowski, Przemyslaw
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [29] A Reinforcement Learning Approach for Autonomous Control and Landing of a Quadrotor
    Vankadari, Madhu Babu
    Das, Kaushik
    Shinde, Chinmay
    Kumar, Swagat
    [J]. 2018 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2018, : 676 - 683
  • [30] Fuzzy PID Controller for UAV Based on Reinforcement Learning
    Zhang, Benyi
    Zhang, Weiping
    Mou, Jiawang
    Yang, Runmin
    Zhang, Yichen
    [J]. PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 1724 - 1732