PID with Deep Reinforcement Learning and Heuristic Rules for Autonomous UAV Landing

被引:0
|
作者
Yuan, Man [1 ]
Wang, Chang [1 ]
Zhang, Pengpeng [2 ]
Wei, Changyun [2 ]
机构
[1] Natl Univ Def Technol, Changsha 410073, Hunan, Peoples R China
[2] Hohai Univ, Changzhou 213022, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
UAV landing; Deep reinforcement learning; DDPG; PID; STRATEGY;
D O I
10.1007/978-981-99-0479-2_174
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned Aerial Vehicle (UAV) landing is a challenging task in dynamic environments. The PID controller can be used, but it suffers from the problem of manual parameter tuning. In this paper, we propose that PID can be combined with deep reinforcement learning to learn the PID parameters autonomous learning. Besides, heuristic rules of how to adjust the PID parameters can be used to further speed up the learning. We demonstrate the effectiveness of the proposed method in a simulated quadrotor UAV landing task.
引用
收藏
页码:1876 / 1884
页数:9
相关论文
共 50 条
  • [1] A Deep Reinforcement Learning Strategy for UAV Autonomous Landing on a Platform
    Jiang, Zhiling
    Song, Guanghua
    [J]. 2022 INTERNATIONAL CONFERENCE ON COMPUTING, ROBOTICS AND SYSTEM SCIENCES, ICRSS, 2022, : 104 - 109
  • [2] A Deep Reinforcement Learning Strategy for UAV Autonomous Landing on a Moving Platform
    Rodriguez-Ramos, Alejandro
    Sampedro, Carlos
    Bavle, Hriday
    de la Puente, Paloma
    Campoy, Pascual
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 93 (1-2) : 351 - 366
  • [3] A Deep Reinforcement Learning Strategy for UAV Autonomous Landing on a Moving Platform
    Alejandro Rodriguez-Ramos
    Carlos Sampedro
    Hriday Bavle
    Paloma de la Puente
    Pascual Campoy
    [J]. Journal of Intelligent & Robotic Systems, 2019, 93 : 351 - 366
  • [4] UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy
    Xie, Jingyi
    Peng, Xiaodong
    Wang, Haijiao
    Niu, Wenlong
    Zheng, Xiao
    [J]. SENSORS, 2020, 20 (19) : 1 - 17
  • [5] Deep Reinforcement Learning with Corrective Feedback for Autonomous UAV Landing on a Mobile Platform
    Wu, Lizhen
    Wang, Chang
    Zhang, Pengpeng
    Wei, Changyun
    [J]. DRONES, 2022, 6 (09)
  • [6] Toward End-to-End Control for UAV Autonomous Landing via Deep Reinforcement Learning
    Polvara, Riccardo
    Patacchiola, Massimiliano
    Sharma, Sanjay
    Wan, Jian
    Manning, Andrew
    Sutton, Robert
    Cangelosi, Angelo
    [J]. 2018 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2018, : 115 - 123
  • [7] Autonomous Planetary Landing via Deep Reinforcement Learning and Transfer Learning
    Ciabatti, Giulia
    Daftry, Shreyansh
    Capobianco, Roberto
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 2031 - 2038
  • [8] Autonomous Emergency Landing for Multicopters using Deep Reinforcement Learning
    Bartolomei, Luca
    Kompis, Yves
    Teixeira, Lucas
    Chli, Margarita
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 3392 - 3399
  • [9] Explainable Deep Reinforcement Learning for UAV autonomous path planning
    He, Lei
    Aouf, Nabil
    Song, Bifeng
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 118
  • [10] Autonomous obstacle avoidance of UAV based on deep reinforcement learning
    Yang, Songyue
    Yu, Guizhen
    Meng, Zhijun
    Wang, Zhangyu
    Li, Han
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3323 - 3335