Machine learning concepts applied to oral pathology and oral medicine: A convolutional neural networks' approach

被引:17
|
作者
Damaceno Araujo, Anna Luiza [1 ,2 ,3 ]
da Silva, Viviane Mariano [4 ]
Kudo, Maira Suzuka [4 ]
Carlos de Souza, Eduardo Santos [5 ]
Saldivia-Siracusa, Cristina [1 ]
Giraldo-Roldan, Daniela [1 ]
Lopes, Marcio Ajudarte [1 ]
Vargas, Pablo Agustin [1 ]
Khurram, Syed Ali [6 ]
Pearson, Alexander T. [7 ,8 ]
Kowalski, Luiz Paulo [2 ,3 ,9 ]
de Leon Ferreira de Carvalho, Andre Carlos Ponce [5 ]
Santos-Silva, Alan Roger [1 ]
Moraes, Matheus Cardoso [4 ]
机构
[1] Univ Campinas FOP UNICAMP, Piracicaba Dent Sch, Oral Diag Dept, Piracicaba, SP, Brazil
[2] Univ Sao Paulo, Head & Neck Surg Dept, Med Sch, Sao Paulo, SP, Brazil
[3] Univ Sao Paulo, LIM 28, Med Sch, Sao Paulo, SP, Brazil
[4] Fed Univ Sao Paulo ICT Unifesp, Inst Sci & Technol, Sao Jose Dos Campos, SP, Brazil
[5] Univ Sao Paulo ICMC USP, Inst Math & Comp Sci, Sao Carlos, SP, Brazil
[6] Univ Sheffield, Sch Clin Dent, Unit Oral & Maxillofacial Pathol, Sheffield, S Yorkshire, England
[7] Univ Chicago, Dept Med, Sect Hemathol Oncol, Chicago, IL USA
[8] Univ Chicago, Comprehens Canc Ctr, Chicago, IL 60637 USA
[9] AC Camargo Canc Ctr, Dept Head & Neck Surg & Otorhinolaryngol, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
artificial intelligence; artificial neural network; deep learning; oral cancer; supervised learning; ARTIFICIAL-INTELLIGENCE; CLASSIFICATION; SEGMENTATION; IMAGES; TISSUE; TUMOR; HEAD;
D O I
10.1111/jop.13397
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
IntroductionArtificial intelligence models and networks can learn and process dense information in a short time, leading to an efficient, objective, and accurate clinical and histopathological analysis, which can be useful to improve treatment modalities and prognostic outcomes. This paper targets oral pathologists, oral medicinists, and head and neck surgeons to provide them with a theoretical and conceptual foundation of artificial intelligence-based diagnostic approaches, with a special focus on convolutional neural networks, the state-of-the-art in artificial intelligence and deep learning. MethodsThe authors conducted a literature review, and the convolutional neural network's conceptual foundations and functionality were illustrated based on a unique interdisciplinary point of view. ConclusionThe development of artificial intelligence-based models and computer vision methods for pattern recognition in clinical and histopathological image analysis of head and neck cancer has the potential to aid diagnosis and prognostic prediction.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 50 条
  • [21] Scientific production of Brazilian researchers focusing on oral surgery, oral medicine, and oral pathology
    Farias, Lucyana Conceicao
    Barbosa, Mauro Costa
    Barbosa Martelli, Daniella Reis
    Martelli Junior, Hercilio
    BRAZILIAN ORAL RESEARCH, 2022, 36
  • [22] Postgraduate employment outcomes of Brazilian oral medicine and oral pathology programs
    Bezerra, Helen Kaline Farias
    da Cruz Perez, Danyel Elias
    Bonan, Paulo Rogerio Ferreti
    Moret, Marcelo Albano
    Santos-Silva, Alan Roger
    Martelli Junior, Hercilio
    ORAL DISEASES, 2024, 30 (04) : 2758 - 2759
  • [23] ACTIVE DEEP LEARNING: IMPROVED TRAINING EFFICIENCY OF CONVOLUTIONAL NEURAL NETWORKS FOR TISSUE CLASSIFICATION IN ORAL CAVITY CANCER
    Folmsbee, Jonathan
    Liu, Xulei
    Brandwein-Weber, Margaret
    Doyle, Scott
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 770 - 773
  • [24] Evaluation of the Participation of Brazilian Women in Research in Oral Pathology and Oral Medicine
    Ferreira, Luiz Miguel
    Nascimento, Joao Pedro Santos
    de Sousa, arlen Almeida Duarte
    de Oliveira, Fabricio Emanuel Soares
    Martelli, Daniella Reis B.
    Santos-Silva, Alan Roger
    Martelli-Junior, Hercilio
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2025, 54 (01) : 65 - 69
  • [25] Abstracts of the XXI Brazilian Congress of Oral Medicine and Oral Pathology Abstracts
    不详
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2014, 117 (02): : E121 - E227
  • [26] Oral pathology and oral medicine in Latin American countries: current stage
    Santos-Leite, Eder Gerardo
    Sobral, Layanne
    Gilligan, Gerardo
    Flores-Ramos, Janethliliam
    Gonzalez-Arriagada, Wilfredo Alejandro
    Vega, Claudia Pena
    Reivan-Ortiz, Patricia
    Gonzalez-Galvan, Maria del Carmen
    Delgado-Azanero, Wilson
    Bologna-Molina, Ronell
    Villarroel-Dorrego, Mariana
    Martinez-Pedraza, Ricardo
    de Andrade, Bruno Augusto Benevenuto
    Martelli-Junior, Hercilio
    MEDICINA ORAL PATOLOGIA ORAL Y CIRUGIA BUCAL, 2024, 29 (04): : e527 - e532
  • [27] Postgraduate Satisfaction in Oral Pathology and Oral Medicine: Insights From Brazil
    Ferreira, Luiz Miguel
    Maia-Lima, Marcos Paulo
    Trezena, Samuel
    de Oliveira, Fabricio Emanuel Soares
    Duarte, arlen Almeida
    Martelli, Daniella Reis Barbosa
    Alves, Fabio de Abreu
    Freitas, Roseana de Almeida
    dos Santos, Jean Nunes
    de Aguiar, Maria Cassia Ferreira
    Lopes, Marcio Ajudarte
    Bonan, Paulo Rogerio Ferreti
    Almeida, Janete Dias
    Martelli-Junior, Hercilio
    ORAL DISEASES, 2025,
  • [28] A deep learning approach to identify blepharoptosis by convolutional neural networks
    Hung, Ju-Yi
    Perera, Chandrashan
    Chen, Ke-Wei
    Myung, David
    Chiu, Hsu-Kuang
    Fuh, Chiou-Shann
    Hsu, Cherng-Ru
    Liao, Shu-Lang
    Kossler, Andrea Lora
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 148
  • [29] Deep Learning Convolutional Neural Networks with Dropout - a Parallel Approach
    Shen, Jingyi
    Shafiq, M. Omair
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 572 - 577
  • [30] An image processing software applied to oral pathology
    Ferreira, Alexandre A.
    Krause, Cristina I.
    Costa, Marcio H.
    Rivero, Elena R. C.
    Tarquinio, Sandra B. C.
    PATHOLOGY RESEARCH AND PRACTICE, 2011, 207 (04) : 232 - 235