Satellite Cluster Flight Using Guidance Trajectory and Model Predictive Control

被引:0
|
作者
Smith, Tyson [1 ]
Akagi, John [1 ]
Droge, Greg [2 ]
机构
[1] Space Dynam Lab, Logan, UT 84341 USA
[2] Utah State Univ, Elect & Comp Engn Dept, Logan, UT 84322 USA
来源
JOURNAL OF THE ASTRONAUTICAL SCIENCES | 2024年 / 71卷 / 02期
关键词
Formation flying; Model predictive control; Switching surfaces; Spacecraft guidance; RELATIVE MOTION; SPACECRAFT; ALGORITHMS; MATRIX;
D O I
10.1007/s40295-024-00438-7
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents a model predictive control based framework that is used in conjunction with a polytope boundary constraint and the Hill-Clohessy-Wiltshire equations to maintain a desired formation of a cluster of spacecraft while also allowing freedom to maneuver within the allowable bounds. A fuel optimal guidance trajectory is generated and the model predictive control framework controls to this desired trajectory. The operational polytope boundaries enable the predictive framework of the model predictive control to be used to make small maneuvers to correct perturbations from its desired trajectory. The boundaries are designed such that no two agents have overlapping regions, allowing the vehicles to execute avoidance strategies without continually maintaining the trajectories of other agents. The model predictive control framework combined with the convex polytope boundary enables a scalable method that can support clusters of satellites in safely achieving mission objectives while minimizing fuel usage. As part of the implementation of this control scheme, this paper compares the fuel usage for a three spacecraft system. This work also compares the computation and fuel requirements for L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_1$$\end{document}, L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}, and L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\infty$$\end{document} norm formulations of the framework.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Model predictive flight control using adaptive support vector regression
    Shin, Jongho
    Kim, H. Jin
    Park, Sewook
    Kim, Youdan
    NEUROCOMPUTING, 2010, 73 (4-6) : 1031 - 1037
  • [32] Nonlinear Model Predictive Control-Based Guidance Algorithm for Quadrotor Trajectory Tracking with Obstacle Avoidance
    Chunhui Zhao
    Dong Wang
    Jinwen Hu
    Quan Pan
    Journal of Systems Science and Complexity, 2021, 34 : 1379 - 1400
  • [33] Nonlinear Model Predictive Control-Based Guidance Algorithm for Quadrotor Trajectory Tracking with Obstacle Avoidance
    Zhao, Chunhui
    Wang, Dong
    Hu, Jinwen
    Pan, Quan
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2021, 34 (04) : 1379 - 1400
  • [34] Nonlinear Model Predictive Control-Based Guidance Algorithm for Quadrotor Trajectory Tracking with Obstacle Avoidance
    ZHAO Chunhui
    WANG Dong
    HU Jinwen
    PAN Quan
    JournalofSystemsScience&Complexity, 2021, 34 (04) : 1379 - 1400
  • [35] Trajectory Distribution Control for Model Predictive Path Integral Control using Covariance Steering
    Yin, Ji
    Zhang, Zhiyuan
    Theodorou, Evangelos
    Tsiotras, Panagiotis
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 1478 - 1484
  • [36] Trajectory Tracking Control of Transformer Inspection Robot Using Distributed Model Predictive Control
    Wei, Lai
    Xiang, Guofei
    Ma, Congjun
    Jiang, Xuejian
    Dian, Songyi
    SENSORS, 2023, 23 (22)
  • [37] ON THE POWERED FLIGHT TRAJECTORY OF AN EARTH SATELLITE
    FRIED, BD
    JET PROPULSION, 1957, 27 (06): : 641 - 643
  • [38] COMMENTS ON THE POWERED FLIGHT TRAJECTORY OF A SATELLITE
    EDELBAUM, TN
    JET PROPULSION, 1957, 27 (12): : 1260 - 1261
  • [39] Reference trajectory tuning of model predictive control
    Yamashita, Andre Shigueo
    Alexandre, Paulo Martin
    Zanin, Antonio Carlos
    Odloak, Darci
    CONTROL ENGINEERING PRACTICE, 2016, 50 : 1 - 11
  • [40] OPTIMUM FLIGHT TRAJECTORY GUIDANCE BASED ON TOTAL-ENERGY CONTROL OF AIRCRAFT
    WU, SF
    GUO, SF
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1994, 17 (02) : 291 - 296