Bayesian adaptive Lasso estimation of large graphical model based on modified Cholesky decomposition

被引:0
|
作者
Li, Fanqun [1 ]
Zhao, Mingtao [1 ]
Zhang, Kongsheng [1 ]
机构
[1] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233000, Peoples R China
关键词
Graphical model; Regression; Bayesian adaptive Lasso; Modified Cholesky decomposition; SELECTION; REGRESSION;
D O I
10.1016/j.spl.2023.110004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, based on the modified Cholesky decomposition of the precision matrix, we propose Bayesian adaptive Lasso estimation and maximum adaptive posterior estimation for graphical model. We also recover the graph by minimizing the decoupled shrinkage and selection loss function.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Robust estimation of sparse precision matrix using adaptive weighted graphical lasso approach
    Tang, Peng
    Jiang, Huijing
    Kim, Heeyoung
    Deng, Xinwei
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2021, 33 (02) : 249 - 272
  • [22] Adaptive lasso echo state network based on modified Bayesian information criterion for nonlinear system modeling
    Junfei Qiao
    Lei Wang
    Cuili Yang
    [J]. Neural Computing and Applications, 2019, 31 : 6163 - 6177
  • [23] Estimation of the Cholesky decomposition of the covariance matrix for a conditional independent normal model
    Sun, XQ
    Sun, DC
    [J]. STATISTICS & PROBABILITY LETTERS, 2005, 73 (01) : 1 - 12
  • [24] Estimation of the Cholesky decomposition in a conditional independent normal model with missing data
    He, Daojiang
    Xu, Kai
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 88 : 27 - 39
  • [25] A Cholesky Decomposition based Massive MIMO Uplink Detector with Adaptive Interpolation
    Gangarajaiah, Rakesh
    Prabhu, Hemanth
    Edfors, Ove
    Liu, Liang
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2017, : 344 - 347
  • [26] Network-wide traffic state estimation using a mixture Gaussian graphical model and graphical lasso
    Hara, Yusuke
    Suzuki, Junpei
    Kuwahara, Masao
    [J]. Transportation Research Part C: Emerging Technologies, 2018, 86 : 622 - 638
  • [27] Network-wide traffic state estimation using a mixture Gaussian graphical model and graphical lasso
    Hara, Yusuke
    Suzuki, Junpei
    Kuwahara, Masao
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2018, 86 : 622 - 638
  • [28] Variational inference on a Bayesian adaptive lasso Tobit quantile regression model
    Wang, Zhiqiang
    Wu, Ying
    Cheng, WeiLi
    [J]. STAT, 2023, 12 (01):
  • [29] Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data
    Lv, Jing
    Guo, Chaohui
    [J]. COMPUTATIONAL STATISTICS, 2017, 32 (03) : 947 - 975
  • [30] Bayesian Adaptive Lasso for the Partial Functional Linear Spatial Autoregressive Model
    Xu, Dengke
    Tian, Ruiqin
    Lu, Ying
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022