Wave Propagation in High-Contrast Media: Periodic and Beyond

被引:0
|
作者
Fressart, Elise [2 ]
Verfuerth, Barbara [1 ]
机构
[1] Univ Bonn, Inst Numer Simulat, Friedrich Hirzebruch Allee 7, D-53115 Bonn, Germany
[2] Ecole Natl Ponts & Chaussees ENPC, 6&8 Ave Blaise Pascal, F-77455 Marne La Vallee 2, France
关键词
Multiscale Method; Homogenization; Wave Propagation; High-Contrast Material; HETEROGENEOUS MULTISCALE METHOD; NUMERICAL HOMOGENIZATION; META-MATERIAL; LOCALIZATION; EQUATIONS;
D O I
10.1515/cmam-2023-0066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with the classical wave equation with a high-contrast coefficient in the spatial derivative operator. We first treat the periodic case, where we derive a new limit in the one-dimensional case. The behavior is illustrated numerically and contrasted to the higher-dimensional case. For general unstructured high-contrast coefficients, we present the Localized Orthogonal Decomposition and show a priori error estimates in suitably weighted norms. Numerical experiments illustrate the convergence rates in various settings.
引用
收藏
页码:337 / 354
页数:18
相关论文
共 50 条
  • [41] Homogenization of a class of quasilinear elliptic equations in high-contrast fissured media
    Amaziane, B.
    Pankratov, L.
    Piatnitski, A.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 1131 - 1155
  • [42] HOMOGENIZATION OF HIGH-CONTRAST AND NON SYMMETRIC CONDUCTIVITIES FOR NON PERIODIC COLUMNAR STRUCTURES
    Camar-Eddine, Mohamed
    Pater, Laurent
    NETWORKS AND HETEROGENEOUS MEDIA, 2013, 8 (04) : 913 - 941
  • [43] NUMERICAL-SIMULATION OF WAVE-PROPAGATION IN PERIODIC MEDIA
    KLYATSKIN, VI
    KOSHEL, KV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1983, 84 (06): : 2092 - 2098
  • [44] TWO-DIMENSIONAL WAVE PROPAGATION IN LAYERED PERIODIC MEDIA
    de Luna, Manuel Quezada
    Ketcheson, David I.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (06) : 1852 - 1869
  • [45] A method of controlling wave propagation in initially spatially periodic media
    Inserra, C.
    Tournat, V.
    Gusev, V.
    EPL, 2007, 78 (04)
  • [46] WAVE PROPAGATION IN PERIODIC AND RANDOM TIME-DEPENDENT MEDIA
    Garnier, Josselin
    MULTISCALE MODELING & SIMULATION, 2021, 19 (03): : 1190 - 1211
  • [47] Electromagnetic wave propagation in time-periodic chiral media
    Koufidis, Stefanos fr.
    Koutserimpas, Theodoros t.
    Monticone, Francesco
    Mccall, Martin w.
    OPTICAL MATERIALS EXPRESS, 2024, 14 (12): : 3006 - 3029
  • [48] Parallel computing in the acoustic and elastic wave propagation in periodic media
    Kafesaki, M
    Economou, EN
    Sigalas, MM
    DEVELOPMENTS IN COMPUTATIONAL MECHANICS WITH HIGH PERFORMANCE COMPUTING, 1999, : 155 - 159
  • [49] A Fresnel Propagation Analysis of NFIRAOS/IRIS High-Contrast Exoplanet Imaging Capabilities
    Marois, Christian
    Veran, Jean-Pierre
    Correla, Carlos
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [50] BLOCH WAVES IN CRYSTALS AND PERIODIC HIGH CONTRAST MEDIA
    Lipton, Robert
    Viator, Robert, Jr.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 889 - 918