Latest Advances in Manufacturing and Machine Learning of Bulk Metallic Glasses

被引:3
|
作者
Graeve, Olivia A. [1 ]
Garcia-Vazquez, Mireya S. [2 ]
Ramirez-Acosta, Alejandro A. [2 ]
Cadieux, Zachary [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr MC 0411, La Jolla, CA 92093 USA
[2] Inst Politecn Nacl, Ctr Invest & Desarrollo Tecnol Digital, Ave Inst Politecn Nacl 1310, Tijuana 22435, Baja California, Mexico
基金
美国国家科学基金会;
关键词
amorphous metal; artificial intelligence; machine learning; manufacturing; processing; THERMAL SPRAY COATINGS; MEAN-SQUARE ERROR; STATE-OF-ART; TEMPERATURE-TRANSFORMATION DIAGRAM; CO AMORPHOUS ALLOY; POWDER BED FUSION; FORMING ABILITY; MECHANICAL-PROPERTIES; CORROSION-RESISTANCE; IN-SITU;
D O I
10.1002/adem.202201493
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this review, two interrelated areas are focused on for the development of novel amorphous metallic alloys, namely, materials processing and machine learning techniques for the design of new alloy compositions. Findings, barriers, and opportunities are described, targeting powder production and sintering, additive manufacturing, and postprocessing techniques, followed by the latest developments in artificial intelligence algorithms for both the design of new alloys and for alloy classification tasks.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Advances in bulk metallic glasses
    Peter K. Liaw
    Gongyao Wang
    Judy Schneider
    [J]. JOM, 2010, 62 : 9 - 9
  • [2] Advances in bulk metallic glasses
    Liaw, Peter K.
    Wang, Gongyao
    Schneider, Judy
    [J]. JOM, 2010, 62 (04) : 9 - 9
  • [3] Latest advances in additive manufacturing with metallic materials
    Balbas Calvo, Alexandra
    del Mar Espinosa, Maria
    Dominguez Somonte, Manuel
    [J]. REVISTA DIGITAL LAMPSAKOS, 2018, (19): : 47 - 54
  • [4] Evolutionary design of machine-learning-predicted bulk metallic glasses
    Forrest, Robert M.
    Greer, A. Lindsay
    [J]. DIGITAL DISCOVERY, 2023, 2 (01): : 202 - 218
  • [5] Determination of glass forming ability of bulk metallic glasses based on machine learning
    Peng, Li
    Long, Zhilin
    Zhao, Mingshengzi
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2021, 195
  • [6] Investigation on the serrated flow behavior of bulk metallic glasses based on machine learning
    Zhao, M. S. Z.
    Long, Z. L.
    Peng, L.
    [J]. MATERIALS RESEARCH EXPRESS, 2021, 8 (09)
  • [7] Prediction of Glass Forming Ability of Bulk Metallic Glasses Using Machine Learning
    Reddy, G. Jaideep
    Kandavalli, Manjunadh
    Saboo, Tanay
    Rao, A. K. Prasada
    [J]. INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2021, 10 (04) : 610 - 626
  • [8] Prediction of Glass Forming Ability of Bulk Metallic Glasses Using Machine Learning
    G. Jaideep Reddy
    Manjunadh Kandavalli
    Tanay Saboo
    A. K. Prasada Rao
    [J]. Integrating Materials and Manufacturing Innovation, 2021, 10 : 610 - 626
  • [9] Machine learning prediction of glass-forming ability in bulk metallic glasses
    Xiong, Jie
    Shi, San-Qiang
    Zhang, Tong-Yi
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2021, 192
  • [10] Recent advances in bulk metallic glasses for biomedical applications
    Li, H. F.
    Zheng, Y. F.
    [J]. ACTA BIOMATERIALIA, 2016, 36 : 1 - 20