Infrared and Visible Image Fusion via Hybrid Variational Model

被引:1
|
作者
Xia, Zhengwei [1 ]
Liu, Yun [2 ]
Wang, Xiaoyun [1 ]
Zhang, Feiyun [1 ]
Chen, Rui [3 ]
Jiang, Weiwei [4 ]
机构
[1] Xuchang Univ, Sch Elect & Mech Engn, Xuchang 461000, Peoples R China
[2] Southwest Univ, Coll Artificial Intelligence, Chongqing 400715, Peoples R China
[3] Zhengzhou Univ Light Ind, Coll Software Engn, Zhengzhou 450001, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
infrared image; visible image; image fusion; variational model; NETWORK;
D O I
10.1587/transinf.2023EDL8027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Infrared and visible image fusion can combine the thermal radiation information and the textures to provide a high-quality fused image. In this letter, we propose a hybrid variational fusion model to achieve this end. Specifically, an l0 term is adopted to preserve the highlighted targets with salient gradient variation in the infrared image, an l1 term is used to suppress the noise in the fused image and an l2 term is employed to keep the textures of the visible image. Experimental results demonstrate the superiority of the proposed variational model and our results have more sharpen textures with less noise.
引用
收藏
页码:569 / 573
页数:5
相关论文
共 50 条
  • [31] Infrared and Visible Image Fusion via Test-Time Training
    Zheng, Guoqing
    Fu, Zhenqi
    Lin, Xiaopeng
    Chu, Xueye
    Huang, Yue
    Ding, Xinghao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT X, 2024, 14434 : 77 - 88
  • [32] Infrared and visible image fusion via octave Gaussian pyramid framework
    Lei Yan
    Qun Hao
    Jie Cao
    Rizvi Saad
    Kun Li
    Zhengang Yan
    Zhimin Wu
    Scientific Reports, 11
  • [33] DATFuse: Infrared and Visible Image Fusion via Dual Attention Transformer
    Tang, Wei
    He, Fazhi
    Liu, Yu
    Duan, Yansong
    Si, Tongzhen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (07) : 3159 - 3172
  • [34] Infrared and visible image fusion via parallel scene and texture learning
    Xu, Meilong
    Tang, Linfeng
    Zhang, Hao
    Ma, Jiayi
    Pattern Recognition, 2022, 132
  • [35] SIEFusion: Infrared and Visible Image Fusion via Semantic Information Enhancement
    Lv, Guohua
    Song, Wenkuo
    Wei, Zhonghe
    Cheng, Jinyong
    Dong, Aimei
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 176 - 187
  • [36] STFuse: Infrared and Visible Image Fusion via Semisupervised Transfer Learning
    Wang, Xue
    Guan, Zheng
    Qian, Wenhua
    Cao, Jinde
    Wang, Chengchao
    Ma, Runzhuo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 160 - 173
  • [37] Infrared and visible image fusion via detail preserving adversarial learning
    Ma, Jiayi
    Liang, Pengwei
    Yu, Wei
    Chen, Chen
    Guo, Xiaojie
    Wu, Jia
    Jiang, Junjun
    INFORMATION FUSION, 2020, 54 : 85 - 98
  • [38] Infrared and Visible Image Fusion via Attention-Based Adaptive Feature Fusion
    Wang, Lei
    Hu, Ziming
    Kong, Quan
    Qi, Qian
    Liao, Qing
    ENTROPY, 2023, 25 (03)
  • [39] Infrared and Visible Image Fusion via Multiscale Receptive Field Amplification Fusion Network
    Ji, Chuanming
    Zhou, Wujie
    Lei, Jingsheng
    Ye, Lv
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 493 - 497
  • [40] Adjustable Visible and Infrared Image Fusion
    Wu, Boxiong
    Nie, Jiangtao
    Wei, Wei
    Zhang, Lei
    Zhang, Yanning
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 13463 - 13477