Population-level comparisons of gene regulatory networks modeled on high-throughput single-cell transcriptomics data

被引:4
|
作者
Osorio, Daniel [1 ]
Capasso, Anna [1 ]
Eckhardt, S. Gail [1 ]
Giri, Uma [1 ]
Somma, Alexander [1 ]
Pitts, Todd M. [2 ]
Lieu, Christopher H. [2 ]
Messersmith, Wells A. [2 ]
Bagby, Stacey M. [2 ]
Singh, Harinder [3 ]
Das, Jishnu [3 ]
Sahni, Nidhi [4 ,5 ]
Yi, S. Stephen [1 ,6 ,7 ,8 ]
Kuijjer, Marieke L. [9 ,10 ,11 ]
机构
[1] Univ Texas Austin, Della Med Sch, Livestrong Canc Inst, Dept Oncol, Austin, TX 78712 USA
[2] Univ Colorado, Sch Med, Ctr Canc, Div Med Oncol, Aurora, CO USA
[3] Univ Pittsburg, Ctr Syst Immunol, Dept Immunol, Pittsburgh, PA USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Epigenet & Mol Carcinogenesis, Houston, TX USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX USA
[6] Univ Texas Austin, Coll Nat Sci, Interdisciplinary Life Sci Grad Programs ILSGP, Austin, TX 78712 USA
[7] Univ Texas Austin, Oden Inst Computat Engn & Sci ICES, Austin, TX 78712 USA
[8] Univ Texas Austin, Cockrell Sch Engn, Dept Biomed Engn, Austin, TX 78712 USA
[9] Univ Oslo, Ctr Mol Med Norway NCMM, Oslo, Norway
[10] Leiden Univ, Med Ctr LUMC, Dept Pathol, Leiden, Netherlands
[11] Leiden Univ Med Ctr LUMC, Leiden Ctr Computat Oncol, Leiden, Netherlands
来源
NATURE COMPUTATIONAL SCIENCE | 2024年 / 4卷 / 03期
基金
美国国家卫生研究院;
关键词
COLORECTAL-CANCER; COLON; INFERENCE; SURVIVAL; PATHWAY;
D O I
10.1038/s43588-024-00597-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Single-cell technologies enable high-resolution studies of phenotype-defining molecular mechanisms. However, data sparsity and cellular heterogeneity make modeling biological variability across single-cell samples difficult. Here we present SCORPION, a tool that uses a message-passing algorithm to reconstruct comparable gene regulatory networks from single-cell/nuclei RNA-sequencing data that are suitable for population-level comparisons by leveraging the same baseline priors. Using synthetic data, we found that SCORPION outperformed 12 existing gene regulatory network reconstruction techniques. Using supervised experiments, we show that SCORPION can accurately identify differences in regulatory networks between wild-type and transcription factor-perturbed cells. We demonstrate SCORPION's scalability to population-level analyses using a single-cell RNA-sequencing atlas containing 200,436 cells from colorectal cancer and adjacent healthy tissues. The differences between tumor regions detected by SCORPION are consistent across multiple cohorts as well as with our understanding of disease progression, and elucidate phenotypic regulators that may impact patient survival. SCORPION is an algorithm to model gene regulatory networks based on single-cell data. The authors show that SCORPION outperforms other methods, accurately detects transcription factor activity and can potentially help with the discovery of disease markers.
引用
收藏
页码:237 / 250
页数:17
相关论文
共 50 条
  • [21] Single-cell transcriptomics unveils gene regulatory network plasticity
    Giovanni Iacono
    Ramon Massoni-Badosa
    Holger Heyn
    Genome Biology, 20
  • [22] High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry
    Porichis, Filippos
    Hart, Meghan G.
    Griesbeck, Morgane
    Everett, Holly L.
    Hassan, Muska
    Baxter, Amy E.
    Lindqvist, Madelene
    Miller, Sara M.
    Soghoian, Damien Z.
    Kavanagh, Daniel G.
    Reynolds, Susan
    Norris, Brett
    Mordecai, Scott K.
    Quan Nguyen
    Lai, Chunfai
    Kaufmann, Daniel E.
    NATURE COMMUNICATIONS, 2014, 5
  • [23] High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry
    Filippos Porichis
    Meghan G. Hart
    Morgane Griesbeck
    Holly L. Everett
    Muska Hassan
    Amy E. Baxter
    Madelene Lindqvist
    Sara M. Miller
    Damien Z. Soghoian
    Daniel G. Kavanagh
    Susan Reynolds
    Brett Norris
    Scott K. Mordecai
    Quan Nguyen
    Chunfai Lai
    Daniel E. Kaufmann
    Nature Communications, 5
  • [24] High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer
    Pierce, Sarah E.
    Granja, Jeffrey M.
    Greenleaf, William J.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [25] High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer
    Sarah E. Pierce
    Jeffrey M. Granja
    William J. Greenleaf
    Nature Communications, 12
  • [26] scKINETICS: inference of regulatory velocity with single-cell transcriptomics data
    Burdziak, Cassandra
    Zhao, Chujun Julia
    Haviv, Doron
    Alonso-Curbelo, Direna
    Lowe, Scott W.
    Pe'er, Dana
    BIOINFORMATICS, 2023, 39 : I394 - I403
  • [27] scKINETICS: inference of regulatory velocity with single-cell transcriptomics data
    Burdziak, Cassandra
    Zhao, Chujun Julia
    Haviv, Doron
    Alonso-Curbelo, Direna
    Lowe, Scott W.
    Pe'er, Dana
    BIOINFORMATICS, 2023, 39 : i394 - i403
  • [28] scSNV-seq: high-throughput phenotyping of single nucleotide variants by coupled single-cell genotyping and transcriptomics
    Sarah E. Cooper
    Matthew A. Coelho
    Magdalena E. Strauss
    Aleksander M. Gontarczyk
    Qianxin Wu
    Mathew J. Garnett
    John C. Marioni
    Andrew R. Bassett
    Genome Biology, 25
  • [29] scSNV-seq: high-throughput phenotyping of single nucleotide variants by coupled single-cell genotyping and transcriptomics
    Cooper, Sarah E.
    Coelho, Matthew A.
    Strauss, Magdalena E.
    Gontarczyk, Aleksander M.
    Wu, Qianxin
    Garnett, Mathew J.
    Marioni, John C.
    Bassett, Andrew R.
    GENOME BIOLOGY, 2024, 25 (01)
  • [30] Reconstructing gene regulatory networks in single-cell transcriptomic data analysis
    Hao Dai
    Qi-Qi Jin
    Lin Li
    Luo-Nan Chen
    Zoological Research, 2020, 41 (06) : 599 - 604