Population-level comparisons of gene regulatory networks modeled on high-throughput single-cell transcriptomics data

被引:4
|
作者
Osorio, Daniel [1 ]
Capasso, Anna [1 ]
Eckhardt, S. Gail [1 ]
Giri, Uma [1 ]
Somma, Alexander [1 ]
Pitts, Todd M. [2 ]
Lieu, Christopher H. [2 ]
Messersmith, Wells A. [2 ]
Bagby, Stacey M. [2 ]
Singh, Harinder [3 ]
Das, Jishnu [3 ]
Sahni, Nidhi [4 ,5 ]
Yi, S. Stephen [1 ,6 ,7 ,8 ]
Kuijjer, Marieke L. [9 ,10 ,11 ]
机构
[1] Univ Texas Austin, Della Med Sch, Livestrong Canc Inst, Dept Oncol, Austin, TX 78712 USA
[2] Univ Colorado, Sch Med, Ctr Canc, Div Med Oncol, Aurora, CO USA
[3] Univ Pittsburg, Ctr Syst Immunol, Dept Immunol, Pittsburgh, PA USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Epigenet & Mol Carcinogenesis, Houston, TX USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX USA
[6] Univ Texas Austin, Coll Nat Sci, Interdisciplinary Life Sci Grad Programs ILSGP, Austin, TX 78712 USA
[7] Univ Texas Austin, Oden Inst Computat Engn & Sci ICES, Austin, TX 78712 USA
[8] Univ Texas Austin, Cockrell Sch Engn, Dept Biomed Engn, Austin, TX 78712 USA
[9] Univ Oslo, Ctr Mol Med Norway NCMM, Oslo, Norway
[10] Leiden Univ, Med Ctr LUMC, Dept Pathol, Leiden, Netherlands
[11] Leiden Univ Med Ctr LUMC, Leiden Ctr Computat Oncol, Leiden, Netherlands
来源
NATURE COMPUTATIONAL SCIENCE | 2024年 / 4卷 / 03期
基金
美国国家卫生研究院;
关键词
COLORECTAL-CANCER; COLON; INFERENCE; SURVIVAL; PATHWAY;
D O I
10.1038/s43588-024-00597-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Single-cell technologies enable high-resolution studies of phenotype-defining molecular mechanisms. However, data sparsity and cellular heterogeneity make modeling biological variability across single-cell samples difficult. Here we present SCORPION, a tool that uses a message-passing algorithm to reconstruct comparable gene regulatory networks from single-cell/nuclei RNA-sequencing data that are suitable for population-level comparisons by leveraging the same baseline priors. Using synthetic data, we found that SCORPION outperformed 12 existing gene regulatory network reconstruction techniques. Using supervised experiments, we show that SCORPION can accurately identify differences in regulatory networks between wild-type and transcription factor-perturbed cells. We demonstrate SCORPION's scalability to population-level analyses using a single-cell RNA-sequencing atlas containing 200,436 cells from colorectal cancer and adjacent healthy tissues. The differences between tumor regions detected by SCORPION are consistent across multiple cohorts as well as with our understanding of disease progression, and elucidate phenotypic regulators that may impact patient survival. SCORPION is an algorithm to model gene regulatory networks based on single-cell data. The authors show that SCORPION outperforms other methods, accurately detects transcription factor activity and can potentially help with the discovery of disease markers.
引用
收藏
页码:237 / 250
页数:17
相关论文
共 50 条
  • [1] Population-level comparisons of gene regulatory networks modeled on high-throughput single-cell transcriptomics data
    Daniel Osorio
    Anna Capasso
    S. Gail Eckhardt
    Uma Giri
    Alexander Somma
    Todd M. Pitts
    Christopher H. Lieu
    Wells A. Messersmith
    Stacey M. Bagby
    Harinder Singh
    Jishnu Das
    Nidhi Sahni
    S. Stephen Yi
    Marieke L. Kuijjer
    Nature Computational Science, 2024, 4 : 237 - 250
  • [2] High-throughput single-cell transcriptomics on organoids
    Brazovskaja, Agnieska
    Treutlein, Barbara
    Camp, J. Gray
    CURRENT OPINION IN BIOTECHNOLOGY, 2019, 55 : 167 - 171
  • [3] Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics
    Shen, Xiaohan
    Zhao, Yichun
    Wang, Zhuo
    Shi, Qihui
    LAB ON A CHIP, 2022, 22 (24) : 4774 - 4791
  • [4] High-throughput single-cell transcriptomics of bacteria using combinatorial barcoding
    Gaisser, Karl D.
    Skloss, Sophie N.
    Brettner, Leandra M.
    Paleologu, Luana
    Roco, Charles M.
    Rosenberg, Alexander B.
    Hirano, Matthew
    DePaolo, R. William
    Seelig, Georg
    Kuchina, Anna
    NATURE PROTOCOLS, 2024, 19 (10) : 3048 - 3084
  • [5] High-Throughput Secondary Screening at the Single-Cell Level
    Robinson, J. Paul
    Patsekin, Valery
    Holdman, Cheryl
    Ragheb, Kathy
    Sturgis, Jennifer
    Fatig, Ray
    Avramova, Larisa V.
    Rajwa, Bartek
    Davisson, V. Jo
    Lewis, Nicole
    Narayanan, Padma
    Li, Nianyu
    Qualls, C. W., Jr.
    JALA, 2013, 18 (01): : 85 - 98
  • [6] High-Throughput Cell Death Assays with Single-Cell and Population-Level Analyses Using Real-Time Kinetic Labeling (SPARKL)
    Gelles, Jesse D.
    Chipuk, Jerry E.
    STAR PROTOCOLS, 2020, 1 (01):
  • [7] Automation enables high-throughput and reproducible single-cell transcriptomics library preparation
    Kind, David
    Baskaran, Praveen
    Ramirez, Fidel
    Giner, Martin
    Hayes, Michael
    Santacruz, Diana
    Koss, Carolin K.
    el Kasmi, Karim C.
    Wijayawardena, Bhagya
    Viollet, Coralie
    SLAS TECHNOLOGY, 2022, 27 (02): : 135 - 142
  • [8] Computational approaches for high-throughput single-cell data analysis
    Todorov, Helena
    Saeys, Yvan
    FEBS JOURNAL, 2019, 286 (08) : 1451 - 1467
  • [9] Towards high-throughput parallel imaging and single-cell transcriptomics of microbial eukaryotic plankton
    Grujcic, Vesna
    Saarenpaa, Sami
    Sundh, John
    Sennblad, Bengt
    Norgren, Benjamin
    Latz, Meike
    Giacomello, Stefania
    Foster, Rachel A.
    Andersson, Anders F.
    PLOS ONE, 2024, 19 (01):
  • [10] High-Throughput Cellular Heterogeneity Analysis in Cell Migration at the Single-Cell Level
    Zhou, Mengli
    Ma, Yushu
    Chianga, Chun-Cheng
    Rock, Edwin C.
    Luker, Kathryn E.
    Luker, Gary D.
    Chen, Yu-Chih
    SMALL, 2023, 19 (06)