A Blowup Criteria of Smooth Solutions to the 3D Boussinesq Equations

被引:0
|
作者
Ben Omrane, Ines [1 ]
Gala, Sadek [2 ]
Thera, Michel [3 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Fac Sci, Dept Math & Stat, POB 90950, Riyadh 11623, Saudi Arabia
[2] Ecole Normale Super Mostaganem, Dept Sci Exactes, Box 227, Mostaganem 27000, Algeria
[3] Univ Limoges, XLIM UMR CNRS 7252, Limoges, France
来源
关键词
Boussinesq equations; Besov space; Smooth solution; Blow-up; NAVIER-STOKES-EQUATIONS; IMPROVED REGULARITY CRITERION; UP CRITERION; LOCAL EXISTENCE; BESOV-SPACES; INEQUALITIES;
D O I
10.1007/s00574-024-00383-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we are concerned with the main mechanism for possible blow-up criteria of smooth solutions to the 3D incompressible Boussinesq equations. The main results state that the finite-time blowup/global existence of smooth solutions to the Boussinesq equation is controlled by either of the criteria uh is an element of L20,T ;B infinity,infinity 0(R3)or backward difference huh is an element of L10,T ;B infinity,infinity 0R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{h}\in L<^>{2}\left( 0,T;\dot{B}_{\infty ,\infty }<^>{0}({\mathbb {R}} <^>{3})\right) \quad \text {or}\quad \nabla _{h}u_{h}\in L<^>{1}\left( 0,T;\dot{B} _{\infty ,\infty }<^>{0}\left( {\mathbb {R}}<^>{3}\right) \right) , \end{aligned}$$\end{document}where uh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{h}$$\end{document} and backward difference h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla _{h}$$\end{document} denote the horizontal components of the velocity field and partial derivative with respect to the horizontal variables, respectively. We present a new simple proof for the regularity of this system without using the higher-order energy law and without any assumptions on the temperature theta.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta .$$\end{document} Our results extend the Navier-Stokes equations results in Dong and Zhang (Nonlinear Anal Real World Appl 11:2415-2421, 2010), Dong and Chen (J Math Anal Appl 338:1-10, 2008) and Gala and Ragusa (Electron J Qual Theory Differ Equ, 2016a) to Boussinesq equations.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Damped infinite energy solutions of the 3D Euler and Boussinesq equations
    Chen, William
    Sarria, Alejandro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (09) : 3841 - 3857
  • [22] GLOBAL SMOOTH SOLUTION FOR THE MODIFIED ANISOTROPIC 3D BOUSSINESQ EQUATIONS WITH DAMPING
    Lin, Lin
    Liu, Hui
    Sun, Cheng-Feng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (04): : 2171 - 2195
  • [23] Blowup for the 3D compressible Euler equations
    Zhu, Xusheng
    Tu, Aihua
    Fu, Chunyan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 133 : 51 - 60
  • [24] Blow-up criteria for 3D Boussinesq equations in the multiplier space
    Qiu, Hua
    Du, Yi
    Yao, Zheng'an
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) : 1820 - 1824
  • [25] Regularity Criteria of the 3D Boussinesq Equations in the Morrey-Campanato Space
    Xu, Fuyi
    Zhang, Qian
    Zheng, Xiaoxin
    ACTA APPLICANDAE MATHEMATICAE, 2012, 121 (01) : 231 - 240
  • [26] Regularity Criteria of the 3D Boussinesq Equations in the Morrey-Campanato Space
    Fuyi Xu
    Qian Zhang
    Xiaoxin Zheng
    Acta Applicandae Mathematicae, 2012, 121 : 231 - 240
  • [27] Blowup of smooth solutions for relativistic Euler equations
    Pan, R
    Smoller, JA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (03) : 729 - 755
  • [28] STABLE NEARLY SELF-SIMILAR BLOWUP OF THE 2D BOUSSINESQ AND 3D EULER EQUATIONS WITH SMOOTH DATA II: RIGOROUS NUMERICS\ast
    Chen, Jiajie
    Hou, Thomas Y.
    MULTISCALE MODELING & SIMULATION, 2025, 23 (01): : 25 - 130
  • [29] Blowup of Smooth Solutions for Relativistic Euler Equations
    Ronghua Pan
    Joel A. Smoller
    Communications in Mathematical Physics, 2006, 262 : 729 - 755
  • [30] Blowup in stagnation-point form solutions of the inviscid 2d Boussinesq equations
    Sarria, Alejandro
    Wu, Jiahong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) : 3559 - 3576