A Blowup Criteria of Smooth Solutions to the 3D Boussinesq Equations

被引:0
|
作者
Ben Omrane, Ines [1 ]
Gala, Sadek [2 ]
Thera, Michel [3 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Fac Sci, Dept Math & Stat, POB 90950, Riyadh 11623, Saudi Arabia
[2] Ecole Normale Super Mostaganem, Dept Sci Exactes, Box 227, Mostaganem 27000, Algeria
[3] Univ Limoges, XLIM UMR CNRS 7252, Limoges, France
来源
关键词
Boussinesq equations; Besov space; Smooth solution; Blow-up; NAVIER-STOKES-EQUATIONS; IMPROVED REGULARITY CRITERION; UP CRITERION; LOCAL EXISTENCE; BESOV-SPACES; INEQUALITIES;
D O I
10.1007/s00574-024-00383-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we are concerned with the main mechanism for possible blow-up criteria of smooth solutions to the 3D incompressible Boussinesq equations. The main results state that the finite-time blowup/global existence of smooth solutions to the Boussinesq equation is controlled by either of the criteria uh is an element of L20,T ;B infinity,infinity 0(R3)or backward difference huh is an element of L10,T ;B infinity,infinity 0R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{h}\in L<^>{2}\left( 0,T;\dot{B}_{\infty ,\infty }<^>{0}({\mathbb {R}} <^>{3})\right) \quad \text {or}\quad \nabla _{h}u_{h}\in L<^>{1}\left( 0,T;\dot{B} _{\infty ,\infty }<^>{0}\left( {\mathbb {R}}<^>{3}\right) \right) , \end{aligned}$$\end{document}where uh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{h}$$\end{document} and backward difference h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla _{h}$$\end{document} denote the horizontal components of the velocity field and partial derivative with respect to the horizontal variables, respectively. We present a new simple proof for the regularity of this system without using the higher-order energy law and without any assumptions on the temperature theta.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta .$$\end{document} Our results extend the Navier-Stokes equations results in Dong and Zhang (Nonlinear Anal Real World Appl 11:2415-2421, 2010), Dong and Chen (J Math Anal Appl 338:1-10, 2008) and Gala and Ragusa (Electron J Qual Theory Differ Equ, 2016a) to Boussinesq equations.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A Blowup Criteria of Smooth Solutions to the 3D Boussinesq Equations
    Ines Ben Omrane
    Sadek Gala
    Michel Théra
    Bulletin of the Brazilian Mathematical Society, New Series, 2024, 55
  • [2] Blow-up criteria of smooth solutions to the 3D Boussinesq equations
    Qin, Yuming
    Yang, Xinguang
    Wang, Yu-Zhu
    Liu, Xin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (03) : 278 - 285
  • [3] A LOGARITHMICALLY IMPROVED REGULARITY CRITERION OF SMOOTH SOLUTIONS FOR THE 3D BOUSSINESQ EQUATIONS
    Ye, Zhuan
    OSAKA JOURNAL OF MATHEMATICS, 2016, 53 (02) : 417 - 423
  • [4] THE REGULARITY CRITERIA OF WEAK SOLUTIONS TO 3D AXISYMMETRIC INCOMPRESSIBLE BOUSSINESQ EQUATIONS
    董玉
    黄耀芳
    李莉
    卢青
    ActaMathematicaScientia, 2023, 43 (06) : 2387 - 2397
  • [5] The regularity criteria of weak solutions to 3D axisymmetric incompressible Boussinesq equations
    Dong, Yu
    Huang, Yaofang
    Li, Li
    Lu, Qing
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2387 - 2397
  • [6] The regularity criteria of weak solutions to 3D axisymmetric incompressible Boussinesq equations
    Yu Dong
    Yaofang Huang
    Li Li
    Qing Lu
    Acta Mathematica Scientia, 2023, 43 : 2387 - 2397
  • [7] On the regularity criterion of strong solutions to the 3D Boussinesq equations
    Gala, Sadek
    APPLICABLE ANALYSIS, 2011, 90 (12) : 1829 - 1835
  • [8] A Regularity Criterion of Weak Solutions to the 3D Boussinesq Equations
    Gala, Sadek
    Ragusa, Maria Alessandra
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02): : 513 - 525
  • [9] A regularity criterion of weak solutions to the 3D Boussinesq equations
    Alghamdi, Ahmad Mohammed
    Gala, Sadek
    Ragusa, Maria Alessandra
    AIMS MATHEMATICS, 2017, 2 (03): : 451 - U208
  • [10] A Regularity Criterion of Weak Solutions to the 3D Boussinesq Equations
    Sadek Gala
    Maria Alessandra Ragusa
    Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 513 - 525